2012, 17(2): 687-698. doi: 10.3934/dcdsb.2012.17.687

The co-divergence of vector valued currents

1. 

Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O.Box 653, Beer-Sheva, 84105, Israel, Israel

Received  June 2010 Revised  July 2011 Published  December 2011

In the context of stress theory of the mechanics of continuous media, a generalization of the boundary operator for de Rham currents---the co-divergence operator---is introduced. While the boundary operator of de Rham's theory applies to real valued currents, the co-divergence operator acts on vector valued currents, i.e., functionals dual to differential forms valued in a vector bundle. From the point of view of continuum mechanics, the framework presented here allows for the formulation of the principal notions of continuum mechanics on a manifold that does not have a Riemannian metric or a connection while at the same time allowing irregular bodies and velocity fields.
Citation: Reuven Segev, Lior Falach. The co-divergence of vector valued currents. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 687-698. doi: 10.3934/dcdsb.2012.17.687
References:
[1]

G. de Rham, "Differentiable Manifolds. Forms, Currents, Harmonic Forms,'', Translated from the French by F. R. Smith, 266 (1984).

[2]

H. Federer, "Geometric Measure Theory,'', Springer-Verlag, (1969).

[3]

V. M. Gol'dshteĭn, V. I. Kuz'minow and I. A. Shvedov, Differential forms on Lipschitz manifold,, Sibirskii Matematicheskii Zhurnal, 23 (1982), 16.

[4]

M. Giaquinta, G. Modica and J. Souček, "Cartesian Currents in the Calculus of Variations. I. Cartesian Currents,'', Ergebnisse der Mathematik und ihrer Grenzgebiete, 37 (1998).

[5]

R. S. Palais, "Foundations of Global Non-Linear Analysis,'', W. A. Benjamin, (1968).

[6]

R. S. Palais, "The Geometrization of Physics,'', Lecture notes from a course at National Tsing Hua University, (1981).

[7]

G. Rodnay and R. Segev, Cauchy's flux theorem in light of geometric integration theory,, Journal of Elasticity, 71 (2003), 183. doi: 10.1023/B:ELAS.0000005545.46932.08.

[8]

R. Segev, Metric-independent analysis of the stress-energy tensor,, Journal of Mathematical Physics, 43 (2002), 3220. doi: 10.1063/1.1475347.

[9]

H. Whitney, "Geometric Integration Theory,'', Princeton University Press, (1957).

show all references

References:
[1]

G. de Rham, "Differentiable Manifolds. Forms, Currents, Harmonic Forms,'', Translated from the French by F. R. Smith, 266 (1984).

[2]

H. Federer, "Geometric Measure Theory,'', Springer-Verlag, (1969).

[3]

V. M. Gol'dshteĭn, V. I. Kuz'minow and I. A. Shvedov, Differential forms on Lipschitz manifold,, Sibirskii Matematicheskii Zhurnal, 23 (1982), 16.

[4]

M. Giaquinta, G. Modica and J. Souček, "Cartesian Currents in the Calculus of Variations. I. Cartesian Currents,'', Ergebnisse der Mathematik und ihrer Grenzgebiete, 37 (1998).

[5]

R. S. Palais, "Foundations of Global Non-Linear Analysis,'', W. A. Benjamin, (1968).

[6]

R. S. Palais, "The Geometrization of Physics,'', Lecture notes from a course at National Tsing Hua University, (1981).

[7]

G. Rodnay and R. Segev, Cauchy's flux theorem in light of geometric integration theory,, Journal of Elasticity, 71 (2003), 183. doi: 10.1023/B:ELAS.0000005545.46932.08.

[8]

R. Segev, Metric-independent analysis of the stress-energy tensor,, Journal of Mathematical Physics, 43 (2002), 3220. doi: 10.1063/1.1475347.

[9]

H. Whitney, "Geometric Integration Theory,'', Princeton University Press, (1957).

[1]

Didier Bresch, Jacques Simon. Western boundary currents versus vanishing depth. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 469-477. doi: 10.3934/dcdsb.2003.3.469

[2]

Mehmet Onur Fen, Marat Akhmet. Impulsive SICNNs with chaotic postsynaptic currents. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1119-1148. doi: 10.3934/dcdsb.2016.21.1119

[3]

Huai-Dong Cao and Jian Zhou. On quantum de Rham cohomology theory. Electronic Research Announcements, 1999, 5: 24-34.

[4]

Luigi Ambrosio, Gianluca Crippa, Philippe G. Lefloch. Leaf superposition property for integer rectifiable currents. Networks & Heterogeneous Media, 2008, 3 (1) : 85-95. doi: 10.3934/nhm.2008.3.85

[5]

Monica Motta, Caterina Sartori. Generalized solutions to nonlinear stochastic differential equations with vector--valued impulsive controls. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 595-613. doi: 10.3934/dcds.2011.29.595

[6]

S. Aaron, Z. Conn, Robert S. Strichartz, H. Yu. Hodge-de Rham theory on fractal graphs and fractals. Communications on Pure & Applied Analysis, 2014, 13 (2) : 903-928. doi: 10.3934/cpaa.2014.13.903

[7]

Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365

[8]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

[9]

Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591

[10]

Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291

[11]

Paolo Podio-Guidugli. On the modeling of transport phenomena in continuum and statistical mechanics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1393-1411. doi: 10.3934/dcdss.2017074

[12]

Hinke M. Osinga, Arthur Sherman, Krasimira Tsaneva-Atanasova. Cross-currents between biology and mathematics: The codimension of pseudo-plateau bursting. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2853-2877. doi: 10.3934/dcds.2012.32.2853

[13]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether currents for higher-order variational problems of Herglotz type with time delay. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 91-102. doi: 10.3934/dcdss.2018006

[14]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[15]

M. M. Rao. Integration with vector valued measures. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5429-5440. doi: 10.3934/dcds.2013.33.5429

[16]

Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43

[17]

Luigi Fontana, Steven G. Krantz and Marco M. Peloso. Hodge theory in the Sobolev topology for the de Rham complex on a smoothly bounded domain in Euclidean space. Electronic Research Announcements, 1995, 1: 103-107.

[18]

Qi Lü, Xu Zhang. Operator-valued backward stochastic Lyapunov equations in infinite dimensions, and its application. Mathematical Control & Related Fields, 2018, 8 (1) : 337-381. doi: 10.3934/mcrf.2018014

[19]

Brian Straughan. Shocks and acceleration waves in modern continuum mechanics and in social systems. Evolution Equations & Control Theory, 2014, 3 (3) : 541-555. doi: 10.3934/eect.2014.3.541

[20]

Weinan E, Jianfeng Lu. Mathematical theory of solids: From quantum mechanics to continuum models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5085-5097. doi: 10.3934/dcds.2014.34.5085

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]