October  2011, 16(3): 867-881. doi: 10.3934/dcdsb.2011.16.867

Long time behavior of some epidemic models

1. 

Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN 47907, United States

Received  August 2010 Revised  March 2011 Published  June 2011

In this paper, we prove two results concerning the long time behavior of two systems of reaction diffusion equations motivated by the S-I-R model in epidemic modeling. The results generalize and simplify previous approaches. In particular, we consider the presence of directed diffusions between the two species. The new system contains an ill-posed region for arbitrary parameters. Our result is established under the assumption of small initial data.
Citation: Fang Li, Nung Kwan Yip. Long time behavior of some epidemic models. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 867-881. doi: 10.3934/dcdsb.2011.16.867
References:
[1]

S. Busenberg and C. Castillo-Chavez, Interaction, pair formation and force of infection terms in sexually transmitted diseases,, Mathematical and Statistical Approaches to AIDS Epidemiology, 83 (1989), 289. Google Scholar

[2]

C. Castillo-Chavez and H. R. Thieme, On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic,, Mathematical and Statistical Approaches to AIDS Epidemiology, 83 (1989), 157. Google Scholar

[3]

P. C. Fife, Asymptotic States for Equations of Reaction and Diffusion,, Bull. AMS, 84 (1978), 693. doi: 10.1090/S0002-9904-1978-14502-9. Google Scholar

[4]

M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations,, Math. Biosci., 33 (1977), 35. doi: 10.1016/0025-5564(77)90062-1. Google Scholar

[5]

W. S. C. Gurney and R. M. Nisbet, The Regulation of Inhomogeneous Populations,, J. Theor. Biol., 52 (1975), 441. doi: 10.1016/0022-5193(75)90011-9. Google Scholar

[6]

M. Iannelli, R. Loro, F. A. Milner, A. Pugliese and G. Rabbiolo, An AIDS model with distributed incubation and variable infectiousness: applications to i.v. drug users in Latium, Italy,, Eur. J. Epidemiol., 8 (1992), 585. doi: 10.1007/BF00146381. Google Scholar

[7]

W. O. Kermack and A. G. McKendrick, A Contribution to the Mathematical Theory of Epidemics,, Proc. Roy. Soc. Lond. A, 115 (1927), 700. doi: 10.1098/rspa.1927.0118. Google Scholar

[8]

T. G. Kurtz and J. Xiong, Particle representation for a class of nonlinear SPDEs,, Stoch. Proc. and Their Appl., 83 (1999), 103. doi: 10.1016/S0304-4149(99)00024-1. Google Scholar

[9]

F. A. Milner and R. Zhao, S-I-R Model with Directed Spatial Diffusion,, Mathematical Population Studies, 15 (2008), 160. doi: 10.1080/08898480802221889. Google Scholar

[10]

M. Mimura and M. Yamaguti, Pattern formation in interacting and diffusing systems in population biology,, Adv. Biophys., 15 (1982), 19. doi: 10.1016/0065-227X(82)90004-1. Google Scholar

[11]

B. K. Oksendal, "Stochastic Differential Equations: An Introduction with Applications,", 6th edition, (2003). Google Scholar

[12]

G. F. Webb, A reaction-diffusion model for a deterministic diffusive epidemic,, J. Math. Anal. Appl., 84 (1981), 150. doi: 10.1016/0022-247X(81)90156-6. Google Scholar

show all references

References:
[1]

S. Busenberg and C. Castillo-Chavez, Interaction, pair formation and force of infection terms in sexually transmitted diseases,, Mathematical and Statistical Approaches to AIDS Epidemiology, 83 (1989), 289. Google Scholar

[2]

C. Castillo-Chavez and H. R. Thieme, On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic,, Mathematical and Statistical Approaches to AIDS Epidemiology, 83 (1989), 157. Google Scholar

[3]

P. C. Fife, Asymptotic States for Equations of Reaction and Diffusion,, Bull. AMS, 84 (1978), 693. doi: 10.1090/S0002-9904-1978-14502-9. Google Scholar

[4]

M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations,, Math. Biosci., 33 (1977), 35. doi: 10.1016/0025-5564(77)90062-1. Google Scholar

[5]

W. S. C. Gurney and R. M. Nisbet, The Regulation of Inhomogeneous Populations,, J. Theor. Biol., 52 (1975), 441. doi: 10.1016/0022-5193(75)90011-9. Google Scholar

[6]

M. Iannelli, R. Loro, F. A. Milner, A. Pugliese and G. Rabbiolo, An AIDS model with distributed incubation and variable infectiousness: applications to i.v. drug users in Latium, Italy,, Eur. J. Epidemiol., 8 (1992), 585. doi: 10.1007/BF00146381. Google Scholar

[7]

W. O. Kermack and A. G. McKendrick, A Contribution to the Mathematical Theory of Epidemics,, Proc. Roy. Soc. Lond. A, 115 (1927), 700. doi: 10.1098/rspa.1927.0118. Google Scholar

[8]

T. G. Kurtz and J. Xiong, Particle representation for a class of nonlinear SPDEs,, Stoch. Proc. and Their Appl., 83 (1999), 103. doi: 10.1016/S0304-4149(99)00024-1. Google Scholar

[9]

F. A. Milner and R. Zhao, S-I-R Model with Directed Spatial Diffusion,, Mathematical Population Studies, 15 (2008), 160. doi: 10.1080/08898480802221889. Google Scholar

[10]

M. Mimura and M. Yamaguti, Pattern formation in interacting and diffusing systems in population biology,, Adv. Biophys., 15 (1982), 19. doi: 10.1016/0065-227X(82)90004-1. Google Scholar

[11]

B. K. Oksendal, "Stochastic Differential Equations: An Introduction with Applications,", 6th edition, (2003). Google Scholar

[12]

G. F. Webb, A reaction-diffusion model for a deterministic diffusive epidemic,, J. Math. Anal. Appl., 84 (1981), 150. doi: 10.1016/0022-247X(81)90156-6. Google Scholar

[1]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[2]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[3]

Arthur Henrique Caixeta, Irena Lasiecka, Valéria Neves Domingos Cavalcanti. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation. Evolution Equations & Control Theory, 2016, 5 (4) : 661-676. doi: 10.3934/eect.2016024

[4]

Shoshana Kamin, Guillermo Reyes, Juan Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 521-549. doi: 10.3934/dcds.2010.26.521

[5]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[6]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[7]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

[8]

Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261

[9]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[10]

Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041

[11]

Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873

[12]

Eduard Feireisl. Long time behavior and attractors for energetically insulated fluid systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1587-1609. doi: 10.3934/dcds.2010.27.1587

[13]

Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112

[14]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272

[15]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure & Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

[16]

Pierluigi Colli, Danielle Hilhorst, Françoise Issard-Roch, Giulio Schimperna. Long time convergence for a class of variational phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 63-81. doi: 10.3934/dcds.2009.25.63

[17]

Lih-Ing W. Roeger. Dynamically consistent discrete-time SI and SIS epidemic models. Conference Publications, 2013, 2013 (special) : 653-662. doi: 10.3934/proc.2013.2013.653

[18]

Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699-710. doi: 10.3934/mbe.2007.4.699

[19]

Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933

[20]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks & Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]