2011, 16(1): 393-408. doi: 10.3934/dcdsb.2011.16.393

Local and global exponential synchronization of complex delayed dynamical networks with general topology

1. 

National Key Laboratory of Science and Technology on Holistic Control, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

2. 

College of Mathematics Science, Chongqing Normal University, Chongqing 400047, China

3. 

Department of Mathematics and Science, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar

4. 

Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, United States

Received  June 2010 Revised  January 2011 Published  April 2011

In this paper, we consider a generalized complex network possessing general topology, in which the coupling may be nonlinear, time-varying, nonsymmetric and the elements of each node have different time-varying delays. Some criteria on local and global exponential synchronization are derived in form of linear matrix inequalities (LMIs) for the complex network by constructing suitable Lyapunov functionals. Our results show that the obtained sufficient conditions are less conservative than ones in previous publications. Finally, two numerical examples and their simulation results are given to illustrate the effectiveness of the derived results.
Citation: Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393
References:
[1]

S. H. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268. doi: 10.1038/35065725.

[2]

R. Albert and A. L. BarabIasi, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47. doi: 10.1103/RevModPhys.74.47.

[3]

J. Wu and L. Jiao, Synchronization in complex delayed dynamical networks with nonsymmetric coupling,, Physica A, 386 (2007), 513. doi: 10.1016/j.physa.2007.07.052.

[4]

T. Liu, G. M. Dimirovskib and J. Zhao, Exponential synchronization of complex delayed dynamical networks with general topology,, Physica A, 387 (2008), 643. doi: 10.1016/j.physa.2007.09.019.

[5]

P. Li and Z. Yi, Synchronization analysis of delayed complex networks with time-varying couplings,, Physica A, 387 (2008), 3729. doi: 10.1016/j.physa.2008.02.008.

[6]

C. Li and G. Chen, Synchronization in general complex dynamical networks with coupling delays,, Physica A, 343 (2004), 263. doi: 10.1016/j.physa.2004.05.058.

[7]

J. Lu and D. W. C. Ho, Local and global synchronization in general complex dynamical networks with delay coupling,, Chaos, 37 (2008), 1497. doi: 10.1016/j.chaos.2006.10.030.

[8]

C. P. Li, W. G. Sun and J. Kurths, Synchronization of complex dynamical networks with time delays,, Physica A, 361 (2006), 24. doi: 10.1016/j.physa.2005.07.007.

[9]

X. Q. Wu, Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay,, Physica A, 387 (2008), 997. doi: 10.1016/j.physa.2007.10.030.

[10]

W. Yu, J. Cao and J. Lü, Global synchronization of linearly hybrid coupled networks with time-varying delay,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 108. doi: 10.1137/070679090.

[11]

J. Lu and J. Cao, Synchronization-based approach for parameters identification in delayed chaotic neural networks,, Physica A, 382 (2007), 672. doi: 10.1016/j.physa.2007.04.021.

[12]

J. Lu and J. D. Cao, Adaptive synchronization of uncertain dynamical networks with delayed coupling,, Nonlinear Dynamics, 53 (2008), 107. doi: 10.1007/s11071-007-9299-x.

[13]

H. Huang, G. Feng and J. Cao, Exponential synchronization of chaotic Lur'e systems with delayed feedback control,, Nonlinear Dynamics, 57 (2009), 441. doi: 10.1007/s11071-008-9454-z.

[14]

S. Cai, J. Zhou, L. Xiang and Z. Liu, Robust impulsive synchronization of complex delayed dynamical networks,, Physics Letters A, 372 (2008), 4990. doi: 10.1016/j.physleta.2008.05.077.

[15]

J. Lü, X. Yu and G. Chen, Chaos synchronization of general complex dynamical networks,, Physica A, 334 (2004), 281. doi: 10.1016/j.physa.2003.10.052.

[16]

Z. Li, L. Jiao and J. J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength,, Physica A, 387 (2008), 1369. doi: 10.1016/j.physa.2007.10.063.

[17]

S. Albeverio and Christof Cebulla, Synchronizability of stochastic network ensembles in a model of interacting dynamical units,, Physica A, 386 (2007), 503. doi: 10.1016/j.physa.2007.07.036.

[18]

S. Wen, S. Chen and W. Guo, Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling,, Physics Letters A, 372 (2008), 6340. doi: 10.1016/j.physleta.2008.08.059.

[19]

D. Goldstein and K. Kobayashi, On the complexity of network synchronization,, SIAM Journal on Computing, 35 (2005), 567. doi: 10.1137/S0097539705447086.

[20]

J. Zhou, L. Xiang and Z. Liu, Global synchronization in general complex delayed dynamical networks and its applications,, Physica A, 385 (2007), 729. doi: 10.1016/j.physa.2007.07.006.

[21]

Z. X. Liu, Z. Q. Chen and Z. Z. Yuan, Pinning control of weighted general complex dynamical networks with time delay,, Physica A, 375 (2007), 345. doi: 10.1016/j.physa.2006.09.009.

[22]

W. W. Yu, A LMI-based approach to global asymptotic stability of neural networks with time varying delays,, Nonlinear Dynamics, 48 (2007), 165. doi: 10.1007/s11071-006-9080-6.

[23]

C. Li and X. Liao, Anti-synchronization of a class of coupled chaotic systems via linear feedback control,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 16 (2006), 1041. doi: 10.1142/S0218127406015295.

[24]

X. Liao, S. Guo and C. Li, Stability and bifurcation analysis in tri-neuron model with time delay,, Nonlinear Dynamics, 49 (2007), 319. doi: 10.1007/s11071-006-9137-6.

[25]

J. Wu and L. Jiao, Synchronization in complex dynamical networks with nonsymmetric coupling,, Physica D, 237 (2008), 2487. doi: 10.1016/j.physd.2008.03.002.

show all references

References:
[1]

S. H. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268. doi: 10.1038/35065725.

[2]

R. Albert and A. L. BarabIasi, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47. doi: 10.1103/RevModPhys.74.47.

[3]

J. Wu and L. Jiao, Synchronization in complex delayed dynamical networks with nonsymmetric coupling,, Physica A, 386 (2007), 513. doi: 10.1016/j.physa.2007.07.052.

[4]

T. Liu, G. M. Dimirovskib and J. Zhao, Exponential synchronization of complex delayed dynamical networks with general topology,, Physica A, 387 (2008), 643. doi: 10.1016/j.physa.2007.09.019.

[5]

P. Li and Z. Yi, Synchronization analysis of delayed complex networks with time-varying couplings,, Physica A, 387 (2008), 3729. doi: 10.1016/j.physa.2008.02.008.

[6]

C. Li and G. Chen, Synchronization in general complex dynamical networks with coupling delays,, Physica A, 343 (2004), 263. doi: 10.1016/j.physa.2004.05.058.

[7]

J. Lu and D. W. C. Ho, Local and global synchronization in general complex dynamical networks with delay coupling,, Chaos, 37 (2008), 1497. doi: 10.1016/j.chaos.2006.10.030.

[8]

C. P. Li, W. G. Sun and J. Kurths, Synchronization of complex dynamical networks with time delays,, Physica A, 361 (2006), 24. doi: 10.1016/j.physa.2005.07.007.

[9]

X. Q. Wu, Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay,, Physica A, 387 (2008), 997. doi: 10.1016/j.physa.2007.10.030.

[10]

W. Yu, J. Cao and J. Lü, Global synchronization of linearly hybrid coupled networks with time-varying delay,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 108. doi: 10.1137/070679090.

[11]

J. Lu and J. Cao, Synchronization-based approach for parameters identification in delayed chaotic neural networks,, Physica A, 382 (2007), 672. doi: 10.1016/j.physa.2007.04.021.

[12]

J. Lu and J. D. Cao, Adaptive synchronization of uncertain dynamical networks with delayed coupling,, Nonlinear Dynamics, 53 (2008), 107. doi: 10.1007/s11071-007-9299-x.

[13]

H. Huang, G. Feng and J. Cao, Exponential synchronization of chaotic Lur'e systems with delayed feedback control,, Nonlinear Dynamics, 57 (2009), 441. doi: 10.1007/s11071-008-9454-z.

[14]

S. Cai, J. Zhou, L. Xiang and Z. Liu, Robust impulsive synchronization of complex delayed dynamical networks,, Physics Letters A, 372 (2008), 4990. doi: 10.1016/j.physleta.2008.05.077.

[15]

J. Lü, X. Yu and G. Chen, Chaos synchronization of general complex dynamical networks,, Physica A, 334 (2004), 281. doi: 10.1016/j.physa.2003.10.052.

[16]

Z. Li, L. Jiao and J. J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength,, Physica A, 387 (2008), 1369. doi: 10.1016/j.physa.2007.10.063.

[17]

S. Albeverio and Christof Cebulla, Synchronizability of stochastic network ensembles in a model of interacting dynamical units,, Physica A, 386 (2007), 503. doi: 10.1016/j.physa.2007.07.036.

[18]

S. Wen, S. Chen and W. Guo, Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling,, Physics Letters A, 372 (2008), 6340. doi: 10.1016/j.physleta.2008.08.059.

[19]

D. Goldstein and K. Kobayashi, On the complexity of network synchronization,, SIAM Journal on Computing, 35 (2005), 567. doi: 10.1137/S0097539705447086.

[20]

J. Zhou, L. Xiang and Z. Liu, Global synchronization in general complex delayed dynamical networks and its applications,, Physica A, 385 (2007), 729. doi: 10.1016/j.physa.2007.07.006.

[21]

Z. X. Liu, Z. Q. Chen and Z. Z. Yuan, Pinning control of weighted general complex dynamical networks with time delay,, Physica A, 375 (2007), 345. doi: 10.1016/j.physa.2006.09.009.

[22]

W. W. Yu, A LMI-based approach to global asymptotic stability of neural networks with time varying delays,, Nonlinear Dynamics, 48 (2007), 165. doi: 10.1007/s11071-006-9080-6.

[23]

C. Li and X. Liao, Anti-synchronization of a class of coupled chaotic systems via linear feedback control,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 16 (2006), 1041. doi: 10.1142/S0218127406015295.

[24]

X. Liao, S. Guo and C. Li, Stability and bifurcation analysis in tri-neuron model with time delay,, Nonlinear Dynamics, 49 (2007), 319. doi: 10.1007/s11071-006-9137-6.

[25]

J. Wu and L. Jiao, Synchronization in complex dynamical networks with nonsymmetric coupling,, Physica D, 237 (2008), 2487. doi: 10.1016/j.physd.2008.03.002.

[1]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[2]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[3]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[4]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[5]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[6]

Wei Feng, Xin Lu. Global stability in a class of reaction-diffusion systems with time-varying delays. Conference Publications, 1998, 1998 (Special) : 253-261. doi: 10.3934/proc.1998.1998.253

[7]

Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535

[8]

Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks & Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329

[9]

Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87

[10]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[11]

Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences & Engineering, 2006, 3 (3) : 527-544. doi: 10.3934/mbe.2006.3.527

[12]

Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

[13]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[14]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[15]

Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555

[16]

Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407

[17]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[18]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[19]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[20]

Mohammad-Sahadet Hossain. Projection-based model reduction for time-varying descriptor systems: New results. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 73-90. doi: 10.3934/naco.2016.6.73

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (22)

[Back to Top]