• Previous Article
    Feature extraction of the patterned textile with deformations via optimal control theory
  • DCDS-B Home
  • This Issue
  • Next Article
    Joint backoff control in time and frequency for multichannel wireless systems and its Markov model for analysis
2011, 16(4): 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

Synchronization of chaotic systems with time-varying coupling delays

1. 

Texas A&M University at Qatar, Doha, P.O.Box 23874, Qatar

2. 

Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China

3. 

Institute for Physics, University of Potsdam, Am Neuen Palais, Gebude 19, D-14415 Potsdam, Germany

Received  October 2010 Revised  May 2011 Published  August 2011

In this paper, we study the complete synchronization of a class of time-varying delayed coupled chaotic systems using feedback control. In terms of Linear Matrix Inequalities, a sufficient condition is obtained through using a Lyapunov-Krasovskii functional and differential equation inequalities. The conditions can be easily verified and implemented. We present two simulation examples to illustrate the effectiveness of the proposed method.
Citation: Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071
References:
[1]

S. Boccaletti, J. Kurths, G. Osipov, D. L. Vallares and C. S. Zhou, The synchronization of chaotic systems,, Phys. Rep., 366 (2002), 1. doi: 10.1016/S0370-1573(02)00137-0.

[2]

S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, "Linear Matrix Inequalities In Systems And Control Theory,", SIAM Studies in Applied Mathematics, 15 (1994).

[3]

J. Cao and J. Lu, Adaptive synchronization of neural networks with or without time-varying delay,, Chaos, 16 (2006).

[4]

P. Colet and R. Roy, Digital communication with synchronized chaotic lasers,, Opt. Lett., 19 (1994). doi: 10.1364/OL.19.002056.

[5]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Mathematics and its Applications, 74 (1992).

[6]

H. G. Schuster, ed., "Handbook of Chaos Control: Foundations and Applications,", Wiley-VCH, (1999).

[7]

H. Huang, G. Feng and Y. Sun, Robust synchronization of chaotic systems subject to parameter uncertainties,, Chaos, 19 (2009). doi: 10.1063/1.3212940.

[8]

T. Huang, C. Li and X. Liu, Synchronization of chaotic systems with delay using intermittent linear state feedback,, Chaos, 18 (2008).

[9]

C. Li, G. Feng and X. Liao, Stabilization of nonlinear systems via periodically intermittent control,, IEEE Trans. Circuits and Systems II, 54 (2006), 1019.

[10]

C. Li, X. Liao and K. Wong, Chaotic lag synchronization of coupled time-delayed systems and its application in secure communication,, Physica D, 194 (2004), 187. doi: 10.1016/j.physd.2004.02.005.

[11]

X. Liu, T. Chen and W. Lu, Cluster synchronization for linearly coupled complex networks,, Journal of Industrial and Management Optimization (JIMO), 7 (2011), 87. doi: 10.3934/jimo.2011.7.87.

[12]

J. Lu, J. Cao and D. Ho, Adaptive stabilization and synchronization for chaotic lur’e systems with time-varying delay,, IEEE Transactions on Circuits and Systems I: Regular Papers, 55 (2008), 1347. doi: 10.1109/TCSI.2008.916462.

[13]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems,, Phys. Rev. Lett., 64 (1990), 821. doi: 10.1103/PhysRevLett.64.821.

[14]

J. Qing, Projective synchronization of a new hyperchaotic Lorenz system,, Physics Letters A, 370 (2007), 40. doi: 10.1016/j.physleta.2007.05.028.

[15]

F. Rogister, D. Pieroux, M. Sciamanna, P. Megret and M. Blondel, Anticipating synchronization of two chaotic laser diodes by incoherent optical coupling and its application to secure communications,, Optics Communications, 207 (2002), 295. doi: 10.1016/S0030-4018(02)01494-3.

[16]

M. Rosenblum and A. Pikovsky, Phase synchronization of chaotic oscillators,, Phys. Rev. Lett., 76 (1996), 1804. doi: 10.1103/PhysRevLett.76.1804.

[17]

N. Rulkov and M. Sushchik, Generalized synchronization of chaos in directionally coupled chaotic systems,, Phys. Rev. E, 51 (1995), 980. doi: 10.1103/PhysRevE.51.980.

[18]

S. Sivaprakasam and P. Spencer, Regimes of chaotic synchronization in external-cavity laser diodes,, IEEE Journal of Quantum Electronics, 38 (2002), 1155. doi: 10.1109/JQE.2002.801949.

[19]

Q. Song and J. Cao, Global dissipativity analysis on uncertain neural networks with mixed time-varying delays,, Chaos, 18 (2008).

[20]

K. Thornburg, M. Moller, R. Roy and T. Carr, Chaos and coherence in coupled lasers,, Phys. Rev. E, 55 (1997). doi: 10.1103/PhysRevE.55.3865.

[21]

J. Wang, Z. Yang, T. Huang and M. Xiao, Local and global exponential synchronization of complex delayed dynamical networks with general topology,, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 393. doi: 10.3934/dcdsb.2011.16.393.

[22]

R. Zhen, X. Wu and J. Zhang, "Sliding Model Synchronization Controller Design for Chaotic Neural Network with Time-Varying Delay,", Proceedings of the 8th World Congress on Intelligent Control and Automation, (2010), 3914. doi: 10.1109/WCICA.2010.5554977.

show all references

References:
[1]

S. Boccaletti, J. Kurths, G. Osipov, D. L. Vallares and C. S. Zhou, The synchronization of chaotic systems,, Phys. Rep., 366 (2002), 1. doi: 10.1016/S0370-1573(02)00137-0.

[2]

S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, "Linear Matrix Inequalities In Systems And Control Theory,", SIAM Studies in Applied Mathematics, 15 (1994).

[3]

J. Cao and J. Lu, Adaptive synchronization of neural networks with or without time-varying delay,, Chaos, 16 (2006).

[4]

P. Colet and R. Roy, Digital communication with synchronized chaotic lasers,, Opt. Lett., 19 (1994). doi: 10.1364/OL.19.002056.

[5]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Mathematics and its Applications, 74 (1992).

[6]

H. G. Schuster, ed., "Handbook of Chaos Control: Foundations and Applications,", Wiley-VCH, (1999).

[7]

H. Huang, G. Feng and Y. Sun, Robust synchronization of chaotic systems subject to parameter uncertainties,, Chaos, 19 (2009). doi: 10.1063/1.3212940.

[8]

T. Huang, C. Li and X. Liu, Synchronization of chaotic systems with delay using intermittent linear state feedback,, Chaos, 18 (2008).

[9]

C. Li, G. Feng and X. Liao, Stabilization of nonlinear systems via periodically intermittent control,, IEEE Trans. Circuits and Systems II, 54 (2006), 1019.

[10]

C. Li, X. Liao and K. Wong, Chaotic lag synchronization of coupled time-delayed systems and its application in secure communication,, Physica D, 194 (2004), 187. doi: 10.1016/j.physd.2004.02.005.

[11]

X. Liu, T. Chen and W. Lu, Cluster synchronization for linearly coupled complex networks,, Journal of Industrial and Management Optimization (JIMO), 7 (2011), 87. doi: 10.3934/jimo.2011.7.87.

[12]

J. Lu, J. Cao and D. Ho, Adaptive stabilization and synchronization for chaotic lur’e systems with time-varying delay,, IEEE Transactions on Circuits and Systems I: Regular Papers, 55 (2008), 1347. doi: 10.1109/TCSI.2008.916462.

[13]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems,, Phys. Rev. Lett., 64 (1990), 821. doi: 10.1103/PhysRevLett.64.821.

[14]

J. Qing, Projective synchronization of a new hyperchaotic Lorenz system,, Physics Letters A, 370 (2007), 40. doi: 10.1016/j.physleta.2007.05.028.

[15]

F. Rogister, D. Pieroux, M. Sciamanna, P. Megret and M. Blondel, Anticipating synchronization of two chaotic laser diodes by incoherent optical coupling and its application to secure communications,, Optics Communications, 207 (2002), 295. doi: 10.1016/S0030-4018(02)01494-3.

[16]

M. Rosenblum and A. Pikovsky, Phase synchronization of chaotic oscillators,, Phys. Rev. Lett., 76 (1996), 1804. doi: 10.1103/PhysRevLett.76.1804.

[17]

N. Rulkov and M. Sushchik, Generalized synchronization of chaos in directionally coupled chaotic systems,, Phys. Rev. E, 51 (1995), 980. doi: 10.1103/PhysRevE.51.980.

[18]

S. Sivaprakasam and P. Spencer, Regimes of chaotic synchronization in external-cavity laser diodes,, IEEE Journal of Quantum Electronics, 38 (2002), 1155. doi: 10.1109/JQE.2002.801949.

[19]

Q. Song and J. Cao, Global dissipativity analysis on uncertain neural networks with mixed time-varying delays,, Chaos, 18 (2008).

[20]

K. Thornburg, M. Moller, R. Roy and T. Carr, Chaos and coherence in coupled lasers,, Phys. Rev. E, 55 (1997). doi: 10.1103/PhysRevE.55.3865.

[21]

J. Wang, Z. Yang, T. Huang and M. Xiao, Local and global exponential synchronization of complex delayed dynamical networks with general topology,, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 393. doi: 10.3934/dcdsb.2011.16.393.

[22]

R. Zhen, X. Wu and J. Zhang, "Sliding Model Synchronization Controller Design for Chaotic Neural Network with Time-Varying Delay,", Proceedings of the 8th World Congress on Intelligent Control and Automation, (2010), 3914. doi: 10.1109/WCICA.2010.5554977.

[1]

Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

[2]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[3]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[4]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[5]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[6]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[7]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[8]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[9]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[10]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[11]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[12]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[13]

Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences & Engineering, 2006, 3 (3) : 527-544. doi: 10.3934/mbe.2006.3.527

[14]

Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407

[15]

Wei Feng, Xin Lu. Global stability in a class of reaction-diffusion systems with time-varying delays. Conference Publications, 1998, 1998 (Special) : 253-261. doi: 10.3934/proc.1998.1998.253

[16]

Mohammad-Sahadet Hossain. Projection-based model reduction for time-varying descriptor systems: New results. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 73-90. doi: 10.3934/naco.2016.6.73

[17]

Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769

[18]

Lizhao Yan, Fei Xu, Yongzeng Lai, Mingyong Lai. Stability strategies of manufacturing-inventory systems with unknown time-varying demand. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2033-2047. doi: 10.3934/jimo.2017030

[19]

Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535

[20]

Lijuan Wang, Yashan Xu. Admissible controls and controllable sets for a linear time-varying ordinary differential equation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1001-1019. doi: 10.3934/mcrf.2018043

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]