March  2011, 15(2): 457-473. doi: 10.3934/dcdsb.2011.15.457

Shearing the I-N phase transition of liquid crystalline polymers: Long-time memory of defect initial data

1. 

Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7575, United States

2. 

Departments of Mathematics and Biomedical Engineering, Institute for Advanced Materials, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3250, United States

3. 

Department of Mathematics, University of South Carolina, Columbia, SC 29208

Received  December 2009 Revised  March 2010 Published  December 2010

Liquid crystalline polymers have been extensively studied in shear starting from an equilibrium nematic phase. In this study, we explore the transient and long-time behavior as a steady shear cell experiment commences during an isotropic-nematic (I-N) phase transition. We initialize a localized Gaussian nematic droplet within an unstable isotropic phase with nematic, vorticity-aligned equilibrium at the walls. In the absence of flow, the simulation converges to a homogeneous nematic phase, but not before passing through quite intricate defect arrays and patterns due to physical anchoring, the dimensions of the shear cell, and transient backflow generated around the defect arrays during the I-N transition. Snapshots of this numerical experiment are then used as initial data for shear cell experiments at controlled shear rates. For homogeneous stable nematic equilibrium initial data, the Leal group [4, 5, 6] and the authors [12] confirm the Larson-Mead experimental observations [7, 8]: stationary 2-D roll cells and defect-free 2-D orientational structure at low shear rates, followed at higher shear rates by an unstable transition to an unsteady 2-D cellular flow and defect-laden attractor. We show at low shear rates that the memory of defect-laden data lasts forever; 2-D steady attractors of [4, 5, 12] emerge for defect free initial data, whereas 1-D unsteady attractors arise for defect-laden initial data.
Citation: Ke Xu, M. Gregory Forest, Xiaofeng Yang. Shearing the I-N phase transition of liquid crystalline polymers: Long-time memory of defect initial data. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 457-473. doi: 10.3934/dcdsb.2011.15.457
References:
[1]

M. G. Forest, Q. Wang and R. Zhou, Kinetic structure simulations of nematic polymers in plane Couette cells, II: In-plane structure transitions,, SIAM Multi. Model. Simul., 4 (2005), 1280. doi: 10.1137/040618187. Google Scholar

[2]

J. J. Feng, J. Tao and L. G. Leal, Roll cells and disclinations in sheared nematic polymers,, J. Fluid Mech., 449 (2001), 179. doi: 10.1017/S0022112001006279. Google Scholar

[3]

J. J. Feng and L. G. Leal, Simulating complex flows of liquid-crystalline polymers using the Doi theory,, J. Rheol. \textbf{41} (1997), 41 (1997), 1317. doi: 10.1122/1.550872. Google Scholar

[4]

D. H. Klein, C. J. Garcia-Cervera, H. D. Ceniceros and L. G. Leal, Ericksen number and Deborah number cascade predictions of a model for liquid crystalline polymers for simple shear flow,, Phys. of Fluids, 19 (2007), 023. Google Scholar

[5]

D. H. Klein, "Dynamics of a Model for Nematic Liquid Crystalline Polymers in Planar Shear and Pressure-Driven Channel Flows,", Ph.D thesis, (2007). Google Scholar

[6]

D. H. Klein, C. J. Garcia-Cervera, H. D. Ceniceros and L. G. Leal, Three-dimensional shear driven dynamics of polydomain textures and disclination loops in liquid crystalline polymers,, J. Rheol., 52 (2008), 837. doi: 10.1122/1.2890779. Google Scholar

[7]

R. G. Larson and D. W. Mead, Development of orientation and texture during shearing of liquid-crystalline polymers,, Liq. Cryst., 12 (1992), 751. doi: 10.1080/02678299208029120. Google Scholar

[8]

R. G. Larson and D. W. Mead, The Ericksen number and Deborah number casades in sheared polymeric nematics,, Liq. Cryst., 15 (1993), 151. doi: 10.1080/02678299308031947. Google Scholar

[9]

G. de Luca and A. D. Rey, Dynamic interactions between nematic point defects in the extrusion duct of spiders,, Virtual Journal of Biological Physics Research, 124 (2006), 1. Google Scholar

[10]

J. Shen, Efficient spectral-Galerkin method I. Direct solvers for second and fourth-order equations using Legendre polynomials,, SIAM J. Sci. Comput., 15 (1994), 1489. doi: 10.1137/0915089. Google Scholar

[11]

T. Tsuji and A. D. Rey, Effect of long range order on sheared liquid crystalline materials : Flow regimes, transitions, and rheological diagrams,, Phys. Rev. E, 62 (2000), 8141. doi: 10.1103/PhysRevE.62.8141. Google Scholar

[12]

X. Yang, M. G. Forest, Q. Wang and W. M. Mullins, Dynamic defect morphology and hydrodynamics of sheared nematic polymers in two space dimensions,, J. Rheology, 53 (2009), 589. doi: 10.1122/1.3089622. Google Scholar

[13]

X. Yang, M.G. Forest, Q. Wang and W. M. Mullins, 2-D Lid-driven cavity flow of nematic polymers: an unsteady sea of defects,, Soft Matter, 6 (2010), 1138. doi: 10.1039/b908502e. Google Scholar

[14]

M. G. Forest and Q. Wang, Monodomain response of finite-aspect-ratio macromolecules in shear and related linear flows,, Rheologica Acta, 42 (2003), 20. doi: 10.1007/s00397-002-0252-0. Google Scholar

[15]

M. G. Forest, Q. Wang and R. Zhou, The weak shear kinetic phase diagram for nematic polymers,, Rheol. Acta, 43 (2004), 17. doi: 10.1007/s00397-003-0317-8. Google Scholar

[16]

M.G. Forest, S. Heidenreich, S. Hess, X. Yang and R. Zhou, Robustness of pulsating jet-like layers in sheared nano-rod dispersions,, J. Non-Newtonian Fluid Mech., 155 (2008), 130. doi: 10.1016/j.jnnfm.2008.06.003. Google Scholar

show all references

References:
[1]

M. G. Forest, Q. Wang and R. Zhou, Kinetic structure simulations of nematic polymers in plane Couette cells, II: In-plane structure transitions,, SIAM Multi. Model. Simul., 4 (2005), 1280. doi: 10.1137/040618187. Google Scholar

[2]

J. J. Feng, J. Tao and L. G. Leal, Roll cells and disclinations in sheared nematic polymers,, J. Fluid Mech., 449 (2001), 179. doi: 10.1017/S0022112001006279. Google Scholar

[3]

J. J. Feng and L. G. Leal, Simulating complex flows of liquid-crystalline polymers using the Doi theory,, J. Rheol. \textbf{41} (1997), 41 (1997), 1317. doi: 10.1122/1.550872. Google Scholar

[4]

D. H. Klein, C. J. Garcia-Cervera, H. D. Ceniceros and L. G. Leal, Ericksen number and Deborah number cascade predictions of a model for liquid crystalline polymers for simple shear flow,, Phys. of Fluids, 19 (2007), 023. Google Scholar

[5]

D. H. Klein, "Dynamics of a Model for Nematic Liquid Crystalline Polymers in Planar Shear and Pressure-Driven Channel Flows,", Ph.D thesis, (2007). Google Scholar

[6]

D. H. Klein, C. J. Garcia-Cervera, H. D. Ceniceros and L. G. Leal, Three-dimensional shear driven dynamics of polydomain textures and disclination loops in liquid crystalline polymers,, J. Rheol., 52 (2008), 837. doi: 10.1122/1.2890779. Google Scholar

[7]

R. G. Larson and D. W. Mead, Development of orientation and texture during shearing of liquid-crystalline polymers,, Liq. Cryst., 12 (1992), 751. doi: 10.1080/02678299208029120. Google Scholar

[8]

R. G. Larson and D. W. Mead, The Ericksen number and Deborah number casades in sheared polymeric nematics,, Liq. Cryst., 15 (1993), 151. doi: 10.1080/02678299308031947. Google Scholar

[9]

G. de Luca and A. D. Rey, Dynamic interactions between nematic point defects in the extrusion duct of spiders,, Virtual Journal of Biological Physics Research, 124 (2006), 1. Google Scholar

[10]

J. Shen, Efficient spectral-Galerkin method I. Direct solvers for second and fourth-order equations using Legendre polynomials,, SIAM J. Sci. Comput., 15 (1994), 1489. doi: 10.1137/0915089. Google Scholar

[11]

T. Tsuji and A. D. Rey, Effect of long range order on sheared liquid crystalline materials : Flow regimes, transitions, and rheological diagrams,, Phys. Rev. E, 62 (2000), 8141. doi: 10.1103/PhysRevE.62.8141. Google Scholar

[12]

X. Yang, M. G. Forest, Q. Wang and W. M. Mullins, Dynamic defect morphology and hydrodynamics of sheared nematic polymers in two space dimensions,, J. Rheology, 53 (2009), 589. doi: 10.1122/1.3089622. Google Scholar

[13]

X. Yang, M.G. Forest, Q. Wang and W. M. Mullins, 2-D Lid-driven cavity flow of nematic polymers: an unsteady sea of defects,, Soft Matter, 6 (2010), 1138. doi: 10.1039/b908502e. Google Scholar

[14]

M. G. Forest and Q. Wang, Monodomain response of finite-aspect-ratio macromolecules in shear and related linear flows,, Rheologica Acta, 42 (2003), 20. doi: 10.1007/s00397-002-0252-0. Google Scholar

[15]

M. G. Forest, Q. Wang and R. Zhou, The weak shear kinetic phase diagram for nematic polymers,, Rheol. Acta, 43 (2004), 17. doi: 10.1007/s00397-003-0317-8. Google Scholar

[16]

M.G. Forest, S. Heidenreich, S. Hess, X. Yang and R. Zhou, Robustness of pulsating jet-like layers in sheared nano-rod dispersions,, J. Non-Newtonian Fluid Mech., 155 (2008), 130. doi: 10.1016/j.jnnfm.2008.06.003. Google Scholar

[1]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[2]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[3]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[4]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[5]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[6]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[7]

Zhiyuan Geng, Wei Wang, Pingwen Zhang, Zhifei Zhang. Stability of half-degree point defect profiles for 2-D nematic liquid crystal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6227-6242. doi: 10.3934/dcds.2017269

[8]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[9]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[10]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[11]

Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations & Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007

[12]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[13]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[14]

Zhenlu Cui, Qi Wang. Permeation flows in cholesteric liquid crystal polymers under oscillatory shear. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 45-60. doi: 10.3934/dcdsb.2011.15.45

[15]

Hong Zhou, M. Gregory Forest, Qi Wang. Anchoring-induced texture & shear banding of nematic polymers in shear cells. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 707-733. doi: 10.3934/dcdsb.2007.8.707

[16]

Vladimir Dubinko. Mechanisms of recovery of radiation damage based on the interaction of quodons with crystal defects. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1119-1128. doi: 10.3934/dcdss.2011.4.1119

[17]

Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597

[18]

Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445

[19]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[20]

Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019106

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]