March  2011, 15(2): 401-415. doi: 10.3934/dcdsb.2011.15.401

Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method

1. 

LSEC, Institute of Computational Mathematics, Chinese Academy of Science, Beijing 100190, China

2. 

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, United States

Received  November 2009 Revised  March 2010 Published  December 2010

In this paper, we apply a newly developed generalized discontinuous Galerkin (GDG) method for rigorous simulations of 2-D phase shift masks (PSM). The main advantage of the GDG method is its accurate treatment of jumps in solutions using the Dirac $\delta$ generalized functions as source terms of partial differential equations. The scattering problem of the PSM is cast with a total field/scattering field formulation while the GDG method is used to handle the inhomogeneous jump conditions between the total and scattering fields along the physical and perfectly matched layer (PML) interfaces. Numerical results demonstrate the high order accuracy of the GDG method and its capability of handling the non-periodic structures such as optical images near mask edges.
Citation: Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401
References:
[1]

D. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, United analysis of discontinuous Galerkin methods for elliptic problems,, SIAM J. Numer. Anal., 39 (2002), 1749. doi: 10.1137/S0036142901384162. Google Scholar

[2]

G. A. Baker, Finite element methods for elliptic equations using nonconforming elements,, Math. Comput., 31 (1977), 45. doi: 10.1090/S0025-5718-1977-0431742-5. Google Scholar

[3]

S. Burger and R. Kohle, Benchmark of FEM, waveguide and FDTD algorithms for rigorous mask simulation,, Proc. SPIE, 5992 (2005), 368. Google Scholar

[4]

W. C. Chew, "Waves and Fields in Inhomogeneous Media,", New York: Van Nostrand Reinhold, (1999). Google Scholar

[5]

W. C. Chew and W. H. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates,, IEEE Microwave Guided Wave Lett., 7 (1994), 599. Google Scholar

[6]

B. Cockburn, S. Hou and C. W. Shu, Tvb Runge kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case,, Math. Comput., 54 (1990), 545. Google Scholar

[7]

A. Erdmann and P. Evanschitzky, Rigorous electromagnetic field mask modeling and related lithographic effcts in the low k1 and ultrahigh numerical aperture regime,, J. Microlith., 6 (2007). Google Scholar

[8]

K. Fan, W. Cai and X. Ji, A generalized discontinuous Galerkin (GDG) method for Schrödinger equations with nonsmooth solutions,, J. Comput. Phys., 227 (2008), 2387. doi: 10.1016/j.jcp.2007.10.023. Google Scholar

[9]

W. Lee and F. L. Degertekin, Rigorous coupled-wave analysis of multilayered grating structures,, J. Lightwave Technol., 22 (2004), 2359. doi: 10.1109/JLT.2004.833278. Google Scholar

[10]

M. D. Levenson, N. S. Viswanathan and R. A. Simpson, Improving resolution in photolithography with a phase-shifting mask,, IEEE Trans. on Electron Devices, 29 (1982), 1828. doi: 10.1109/T-ED.1982.21037. Google Scholar

[11]

K. D. Lucas, H. Tanabe and A. J. Strojwas, Efficient and rigorous three-dimensional model for optical lithography simulation,, J. Opt. Soc. Am., 13 (1996), 2187. doi: 10.1364/JOSAA.13.002187. Google Scholar

[12]

T. Sato and A. Endo, Impact of polarization for an attenuated phase shift mask with ArF hyper-numerical aperture lithography,, J. Microlith., 5 (2006). Google Scholar

[13]

A. Taflove and S. C. Hagness, "Computational Electromagnetics: The Finite-Difference Time-Domain Method," 2nd, edition, (). Google Scholar

[14]

A. K. Wong and A. R. Neureuther, Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications,, IEEE Trans. on Semiconductor Manufacturing, 8 (1995), 419. doi: 10.1109/66.475184. Google Scholar

show all references

References:
[1]

D. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, United analysis of discontinuous Galerkin methods for elliptic problems,, SIAM J. Numer. Anal., 39 (2002), 1749. doi: 10.1137/S0036142901384162. Google Scholar

[2]

G. A. Baker, Finite element methods for elliptic equations using nonconforming elements,, Math. Comput., 31 (1977), 45. doi: 10.1090/S0025-5718-1977-0431742-5. Google Scholar

[3]

S. Burger and R. Kohle, Benchmark of FEM, waveguide and FDTD algorithms for rigorous mask simulation,, Proc. SPIE, 5992 (2005), 368. Google Scholar

[4]

W. C. Chew, "Waves and Fields in Inhomogeneous Media,", New York: Van Nostrand Reinhold, (1999). Google Scholar

[5]

W. C. Chew and W. H. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates,, IEEE Microwave Guided Wave Lett., 7 (1994), 599. Google Scholar

[6]

B. Cockburn, S. Hou and C. W. Shu, Tvb Runge kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case,, Math. Comput., 54 (1990), 545. Google Scholar

[7]

A. Erdmann and P. Evanschitzky, Rigorous electromagnetic field mask modeling and related lithographic effcts in the low k1 and ultrahigh numerical aperture regime,, J. Microlith., 6 (2007). Google Scholar

[8]

K. Fan, W. Cai and X. Ji, A generalized discontinuous Galerkin (GDG) method for Schrödinger equations with nonsmooth solutions,, J. Comput. Phys., 227 (2008), 2387. doi: 10.1016/j.jcp.2007.10.023. Google Scholar

[9]

W. Lee and F. L. Degertekin, Rigorous coupled-wave analysis of multilayered grating structures,, J. Lightwave Technol., 22 (2004), 2359. doi: 10.1109/JLT.2004.833278. Google Scholar

[10]

M. D. Levenson, N. S. Viswanathan and R. A. Simpson, Improving resolution in photolithography with a phase-shifting mask,, IEEE Trans. on Electron Devices, 29 (1982), 1828. doi: 10.1109/T-ED.1982.21037. Google Scholar

[11]

K. D. Lucas, H. Tanabe and A. J. Strojwas, Efficient and rigorous three-dimensional model for optical lithography simulation,, J. Opt. Soc. Am., 13 (1996), 2187. doi: 10.1364/JOSAA.13.002187. Google Scholar

[12]

T. Sato and A. Endo, Impact of polarization for an attenuated phase shift mask with ArF hyper-numerical aperture lithography,, J. Microlith., 5 (2006). Google Scholar

[13]

A. Taflove and S. C. Hagness, "Computational Electromagnetics: The Finite-Difference Time-Domain Method," 2nd, edition, (). Google Scholar

[14]

A. K. Wong and A. R. Neureuther, Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications,, IEEE Trans. on Semiconductor Manufacturing, 8 (1995), 419. doi: 10.1109/66.475184. Google Scholar

[1]

Zhiming Chen, Chao Liang, Xueshuang Xiang. An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number. Inverse Problems & Imaging, 2013, 7 (3) : 663-678. doi: 10.3934/ipi.2013.7.663

[2]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[3]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[4]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[5]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[6]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[7]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[8]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[9]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[10]

E. Fossas, J. M. Olm. Galerkin method and approximate tracking in a non-minimum phase bilinear system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 53-76. doi: 10.3934/dcdsb.2007.7.53

[11]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[12]

Yulong Xing, Ching-Shan Chou, Chi-Wang Shu. Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems & Imaging, 2013, 7 (3) : 967-986. doi: 10.3934/ipi.2013.7.967

[13]

M. A. Christou, C. I. Christov. Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation. Conference Publications, 2001, 2001 (Special) : 121-130. doi: 10.3934/proc.2001.2001.121

[14]

Zuowei Cai, Jianhua Huang, Lihong Huang. Generalized Lyapunov-Razumikhin method for retarded differential inclusions: Applications to discontinuous neural networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3591-3614. doi: 10.3934/dcdsb.2017181

[15]

Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051

[16]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[17]

Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211

[18]

Sihong Shao, Huazhong Tang. Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 623-640. doi: 10.3934/dcdsb.2006.6.623

[19]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[20]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]