# American Institute of Mathematical Sciences

July  2010, 14(1): 199-207. doi: 10.3934/dcdsb.2010.14.199

## Global weak solutions to the 1-D fractional Landau-Lifshitz equation

 1 College of Mathematics and Physics, Chongqing University, Chongqing 400044, China 2 Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing, 100088, China 3 College of Mathematics and Information Engineering, Jiaxing University, Zhejiang, 314001, China

Received  June 2009 Revised  February 2010 Published  April 2010

In this work, we generalize the idea of Ginzburg-Landau approximation to study the existence and asymptotic behaviors of global weak solutions to the one dimensional periodical fractional Landau-Lifshitz equation modeling the soft micromagnetic materials. We apply the Galerkin method to get an approximate solution and, to get the convergence of the nonlinear terms we introduce the commutator structure and take advantage of special structures of the equation.
Citation: Xueke Pu, Boling Guo, Jingjun Zhang. Global weak solutions to the 1-D fractional Landau-Lifshitz equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 199-207. doi: 10.3934/dcdsb.2010.14.199
 [1] Ze Li, Lifeng Zhao. Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 607-638. doi: 10.3934/dcds.2019025 [2] Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173 [3] Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575 [4] Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109 [5] Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 835-851. doi: 10.3934/dcdss.2020048 [6] Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644 [7] Wei Deng, Baisheng Yan. On Landau-Lifshitz equations of no-exchange energy models in ferromagnetics. Evolution Equations & Control Theory, 2013, 2 (4) : 599-620. doi: 10.3934/eect.2013.2.599 [8] N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647 [9] Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871 [10] Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665 [11] Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359 [12] Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311 [13] Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825 [14] Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205 [15] Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks & Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715 [16] Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121 [17] Tianlong Shen, Jianhua Huang. Ergodicity of the stochastic coupled fractional Ginzburg-Landau equations driven by α-stable noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 605-625. doi: 10.3934/dcdsb.2017029 [18] Yun Lan, Ji Shu. Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2409-2431. doi: 10.3934/cpaa.2019109 [19] Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071 [20] Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507

2018 Impact Factor: 1.008