2009, 12(3): 597-606. doi: 10.3934/dcdsb.2009.12.597

Infinite propagation speed for a two component Camassa-Holm equation

1. 

School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland

Received  April 2009 Revised  June 2009 Published  July 2009

This paper is concerned with the solutions of a two-component generalisation of the Camassa-Holm equation. We examine the propagation behaviour of compactly supported solutions, namely whether solutions which are initially compactly supported will retain this property throughout their time of evolution. In the negative case, where we show that solutions have an infinite speed of propagation, we present a description of how the solutions retain weaker properties throughout their existence time, namely they decay at an exponentially fast rate for the duration of their existence.
Citation: David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597
[1]

Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

[2]

Jingqun Wang, Lixin Tian, Weiwei Guo. Global exact controllability and asympotic stabilization of the periodic two-component $\mu\rho$-Hunter-Saxton system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2129-2148. doi: 10.3934/dcdss.2016088

[3]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[4]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[5]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[6]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[7]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[8]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[9]

Yongsheng Mi, Chunlai Mu, Pan Zheng. On the Cauchy problem of the modified Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2047-2072. doi: 10.3934/dcdss.2016084

[10]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[11]

Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153

[12]

Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643

[13]

Yong Chen, Hongjun Gao, Yue Liu. On the Cauchy problem for the two-component Dullin-Gottwald-Holm system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3407-3441. doi: 10.3934/dcds.2013.33.3407

[14]

H. A. Erbay, S. Erbay, A. Erkip. On the decoupling of the improved Boussinesq equation into two uncoupled Camassa-Holm equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3111-3122. doi: 10.3934/dcds.2017133

[15]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[16]

Xinglong Wu, Boling Guo. Persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3211-3223. doi: 10.3934/dcds.2013.33.3211

[17]

Alejandro Sarria. Global estimates and blow-up criteria for the generalized Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 641-673. doi: 10.3934/dcdsb.2015.20.641

[18]

Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280

[19]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[20]

Marcus Wunsch. On the Hunter--Saxton system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 647-656. doi: 10.3934/dcdsb.2009.12.647

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (2)
  • HTML views (1)
  • Cited by (45)

Other articles
by authors

[Back to Top]