October  2007, 8(3): 613-622. doi: 10.3934/dcdsb.2007.8.613

Effects of buoyancy on the lower branch modes on a Blasius boundary layer

1. 

Mathematics Department, University of Pretoria, Pretoria 0002, South Africa

Received  August 2006 Revised  January 2007 Published  July 2007

The effect of thermal buoyancy on the stability properties of lower branch Tollmein–Schlichting waves are investigated. At moderate values of thermal buoyancy the standard triple deck structure, which describes the evolution of such short wavelength instabilities in a buoyant boundary layer, is unaltered. The leading order eigenrelation is now a function of thermal buoyancy and from it we can derive the new dominant length-and time–scales for the instability in the case when the boundary layer is strongly buoyant. These new scales demonstrate that, in the case of strong wall cooling the lower branch structure is identical to the upper branch structure, thus suggesting that the curve of neutral stability may become closed at some large value of a Reynolds number. In the alternate limit of strong wall heating the evolution of a fixed frequency disturbance is governed by the linearized interactive boundary-layer equations; in this case wave–like disturbances cannot be described by any form of the quasi–parallel approximation theory.
Citation: Eunice Mureithi. Effects of buoyancy on the lower branch modes on a Blasius boundary layer. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 613-622. doi: 10.3934/dcdsb.2007.8.613
[1]

Lili Du, Mingshu Fan. Thermal runaway for a nonlinear diffusion model in thermal electricity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2349-2368. doi: 10.3934/dcds.2013.33.2349

[2]

Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial & Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499

[3]

Steve Rosencrans, Xuefeng Wang, Shan Zhao. Estimating eigenvalues of an anisotropic thermal tensor from transient thermal probe measurements. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5441-5455. doi: 10.3934/dcds.2013.33.5441

[4]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial & Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[5]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

[6]

Michele Gianfelice, Marco Isopi. On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model. Networks & Heterogeneous Media, 2011, 6 (1) : 127-144. doi: 10.3934/nhm.2011.6.127

[7]

Andrei Halanay, Luciano Pandolfi. Lack of controllability of thermal systems with memory. Evolution Equations & Control Theory, 2014, 3 (3) : 485-497. doi: 10.3934/eect.2014.3.485

[8]

Renata Bunoiu, Claudia Timofte. Homogenization of a thermal problem with flux jump. Networks & Heterogeneous Media, 2016, 11 (4) : 545-562. doi: 10.3934/nhm.2016009

[9]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[10]

Emilian Bulgariu, Ionel-Dumitrel Ghiba. On the thermal stresses in anisotropic porous cylinders. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1539-1550. doi: 10.3934/dcdss.2013.6.1539

[11]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[12]

Shixin Xu, Xingye Yue. Homogenization of thermal-hydro-mass transfer processes. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 55-76. doi: 10.3934/dcdss.2015.8.55

[13]

Stefanie Thiem, Jörg Lässig. Modeling the thermal conductance of phononic crystal plates. Conference Publications, 2013, 2013 (special) : 737-746. doi: 10.3934/proc.2013.2013.737

[14]

Anna Ochal, Michal Jureczka. Numerical treatment of contact problems with thermal effect. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 387-400. doi: 10.3934/dcdsb.2018027

[15]

María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem with degenerate thermal conductivity. Communications on Pure & Applied Analysis, 2002, 1 (3) : 313-325. doi: 10.3934/cpaa.2002.1.313

[16]

Ephraim Agyingi, Tamas Wiandt, Sophia A. Maggelakis. Thermal detection of a prevascular tumor embedded in breast tissue. Mathematical Biosciences & Engineering, 2015, 12 (5) : 907-915. doi: 10.3934/mbe.2015.12.907

[17]

María Teresa González Montesinos, Francisco Ortegón Gallego. The thermistor problem with degenerate thermal conductivity and metallic conduction. Conference Publications, 2007, 2007 (Special) : 446-455. doi: 10.3934/proc.2007.2007.446

[18]

Marina Dolfin, Mirosław Lachowicz. Modeling DNA thermal denaturation at the mesoscopic level. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2469-2482. doi: 10.3934/dcdsb.2014.19.2469

[19]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[20]

Sabri Bensid, Jesús Ildefonso Díaz. Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1757-1778. doi: 10.3934/dcdsb.2017105

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]