March  2007, 7(2): 293-314. doi: 10.3934/dcdsb.2007.7.293

Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasi-geostrophic turbulence?

1. 

Department of Mathematics, University of Central Florida, Box 161364, Orlando, FL 32816-1364, United States

2. 

University of Washington, Department of Applied Mathematics, Box 352420, Seattle, WA 98195-2420

Received  August 2006 Revised  October 2006 Published  December 2006

In systems governing two-dimensional turbulence, surface quasi-geostrophic turbulence, (more generally $\alpha$-turbulence), two-layer quasi-geostrophic turbulence, etc., there often exist two conservative quadratic quantities, one "energy''-like and one "enstrophy''-like. In a finite inertial range there are in general two spectral fluxes, one associated with each conserved quantity. We derive here an inequality comparing the relative magnitudes of the "energy'' and "enstrophy'' fluxes for finite or infinitesimal dissipations, and for hyper or hypo viscosities. When this inequality is satisfied, as is the case of 2D turbulence,where the energy flux contribution to the energy spectrum is small, the subdominant part will be effectively hidden. In sQG turbulence, it is shown that the opposite is true: the downscale energy flux becomes the dominant contribution to the energy spectrum. A combination of these two behaviors appears to be the case in 2-layer QG turbulence, depending on the baroclinicity of the system.
Citation: Eleftherios Gkioulekas, Ka Kit Tung. Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasi-geostrophic turbulence?. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 293-314. doi: 10.3934/dcdsb.2007.7.293
[1]

Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 145-162. doi: 10.3934/dcdsb.2003.3.145

[2]

Patrick Fischer, Charles-Henri Bruneau, Hamid Kellay. Multiresolution analysis for 2D turbulence. part 2: A physical interpretation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 717-734. doi: 10.3934/dcdsb.2007.7.717

[3]

Patrick Fischer. Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 659-686. doi: 10.3934/dcdsb.2005.5.659

[4]

S. Danilov. Non-universal features of forced 2D turbulence in the energy and enstrophy ranges. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 67-78. doi: 10.3934/dcdsb.2005.5.67

[5]

Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2-D turbulence. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1327-1351. doi: 10.3934/dcds.2010.27.1327

[6]

Leonardo Kosloff, Tomas Schonbek. Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1025-1043. doi: 10.3934/dcdss.2014.7.1025

[7]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence. Part 2: Inhomogeneous cases. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 227-241. doi: 10.3934/dcds.2010.28.227

[8]

Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 2. Approach to the KLB limit and interpretation of experimental evidence. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 103-124. doi: 10.3934/dcdsb.2005.5.103

[9]

Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 1. Theoretical formulation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 79-102. doi: 10.3934/dcdsb.2005.5.79

[10]

François Baccelli, Augustin Chaintreau, Danny De Vleeschauwer, David R. McDonald. HTTP turbulence. Networks & Heterogeneous Media, 2006, 1 (1) : 1-40. doi: 10.3934/nhm.2006.1.1

[11]

Eric Falcon. Laboratory experiments on wave turbulence. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 819-840. doi: 10.3934/dcdsb.2010.13.819

[12]

Hugo Beirão da Veiga. Turbulence models, $p-$fluid flows, and $W^{2, L}$ regularity of solutions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 769-783. doi: 10.3934/cpaa.2009.8.769

[13]

Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic & Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685

[14]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[15]

Géry de Saxcé, Claude Vallée. Structure of the space of 2D elasticity tensors. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1525-1537. doi: 10.3934/dcdss.2013.6.1525

[16]

Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations & Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297

[17]

Bernd Kawohl, Guido Sweers. On a formula for sets of constant width in 2d. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2117-2131. doi: 10.3934/cpaa.2019095

[18]

W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111

[19]

Yifei Lou, Sung Ha Kang, Stefano Soatto, Andrea L. Bertozzi. Video stabilization of atmospheric turbulence distortion. Inverse Problems & Imaging, 2013, 7 (3) : 839-861. doi: 10.3934/ipi.2013.7.839

[20]

Alexandre Boritchev. Decaying turbulence for the fractional subcritical Burgers equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2229-2249. doi: 10.3934/dcds.2018092

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]