2007, 7(1): 191-199. doi: 10.3934/dcdsb.2007.7.191

Local stability implies global stability in some one-dimensional discrete single-species models

1. 

Departamento de Matemática Aplicada II, E.T.S.I. Telecomunicación, Universidad de Vigo, Campus Marcosende, 36280 Vigo

Received  December 2005 Revised  August 2006 Published  October 2006

We prove a criterion for the global stability of the positive equilibrium in discrete-time single-species population models of the form $x_{n+1}=x_nF(x_n)$. This allows us to demonstrate analytically (and easily) the conjecture that local stability implies global stability in some well-known models, including the Ricker difference equation and a combination of the models by Hassel and Maynard Smith. Our approach combines the use of linear fractional functions (Möbius transformations) and the Schwarzian derivative.
Citation: Eduardo Liz. Local stability implies global stability in some one-dimensional discrete single-species models. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 191-199. doi: 10.3934/dcdsb.2007.7.191
[1]

Abhyudai Singh, Roger M. Nisbet. Variation in risk in single-species discrete-time models. Mathematical Biosciences & Engineering, 2008, 5 (4) : 859-875. doi: 10.3934/mbe.2008.5.859

[2]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

[3]

James Sandefur. A unifying approach to discrete single-species populations models. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 493-508. doi: 10.3934/dcdsb.2017194

[4]

Yun Kang. Permanence of a general discrete-time two-species-interaction model with nonlinear per-capita growth rates. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2123-2142. doi: 10.3934/dcdsb.2013.18.2123

[5]

E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 323-351. doi: 10.3934/dcdsb.2014.19.323

[6]

Brian Ryals, Robert J. Sacker. Global stability in the 2D Ricker equation revisited. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 585-604. doi: 10.3934/dcdsb.2017028

[7]

Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Mathematical Biosciences & Engineering, 2008, 5 (2) : 355-388. doi: 10.3934/mbe.2008.5.355

[8]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[9]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[10]

Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699-710. doi: 10.3934/mbe.2007.4.699

[11]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[12]

Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066

[13]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[14]

Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253

[15]

Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015

[16]

Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207

[17]

John E. Franke, Abdul-Aziz Yakubu. Periodically forced discrete-time SIS epidemic model with disease induced mortality. Mathematical Biosciences & Engineering, 2011, 8 (2) : 385-408. doi: 10.3934/mbe.2011.8.385

[18]

S. R.-J. Jang. Allee effects in a discrete-time host-parasitoid model with stage structure in the host. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 145-159. doi: 10.3934/dcdsb.2007.8.145

[19]

Sie Long Kek, Mohd Ismail Abd Aziz. Output regulation for discrete-time nonlinear stochastic optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 275-288. doi: 10.3934/naco.2015.5.275

[20]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]