
Previous Article
The constrained planar Nvortex problem: I. Integrability
 DCDSB Home
 This Issue
 Next Article
Theory and simulation of real and ideal magnetohydrodynamic turbulence
1.  Advanced Space Propulsion Laboratory, NASA Johnson Space Center, Houston, Texas 77058, United States 
[1] 
Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 4149. doi: 10.3934/proc.2013.2013.41 
[2] 
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems  S, 2013, 6 (4) : 10171027. doi: 10.3934/dcdss.2013.6.1017 
[3] 
Christine Chambers, Nassif Ghoussoub. Deformation from symmetry and multiplicity of solutions in nonhomogeneous problems. Discrete & Continuous Dynamical Systems  A, 2002, 8 (1) : 267281. doi: 10.3934/dcds.2002.8.267 
[4] 
Piotr Oprocha. Coherent lists and chaotic sets. Discrete & Continuous Dynamical Systems  A, 2011, 31 (3) : 797825. doi: 10.3934/dcds.2011.31.797 
[5] 
François Baccelli, Augustin Chaintreau, Danny De Vleeschauwer, David R. McDonald. HTTP turbulence. Networks & Heterogeneous Media, 2006, 1 (1) : 140. doi: 10.3934/nhm.2006.1.1 
[6] 
Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems & Imaging, 2015, 9 (1) : 143161. doi: 10.3934/ipi.2015.9.143 
[7] 
Eric Falcon. Laboratory experiments on wave turbulence. Discrete & Continuous Dynamical Systems  B, 2010, 13 (4) : 819840. doi: 10.3934/dcdsb.2010.13.819 
[8] 
Daniel Karrasch, Mohammad Farazmand, George Haller. Attractionbased computation of hyperbolic Lagrangian coherent structures. Journal of Computational Dynamics, 2015, 2 (1) : 8393. doi: 10.3934/jcd.2015.2.83 
[9] 
Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the FokkerPlanck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163177. doi: 10.3934/jcd.2016008 
[10] 
William F. Thompson, Rachel Kuske, YueXian Li. Stochastic phase dynamics of noise driven synchronization of two conditional coherent oscillators. Discrete & Continuous Dynamical Systems  A, 2012, 32 (8) : 29712995. doi: 10.3934/dcds.2012.32.2971 
[11] 
Michael Dellnitz, Christian Horenkamp. The efficient approximation of coherent pairs in nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems  A, 2012, 32 (9) : 30293042. doi: 10.3934/dcds.2012.32.3029 
[12] 
Manuel Núñez. Existence of solutions of the equations of electron magnetohydrodynamics in a bounded domain. Discrete & Continuous Dynamical Systems  A, 2010, 26 (3) : 10191034. doi: 10.3934/dcds.2010.26.1019 
[13] 
Haiyan Yin. The stability of contact discontinuity for compressible planar magnetohydrodynamics. Kinetic & Related Models, 2017, 10 (4) : 12351253. doi: 10.3934/krm.2017047 
[14] 
Manuel Núñez. The longtime evolution of mean field magnetohydrodynamics. Discrete & Continuous Dynamical Systems  B, 2004, 4 (2) : 465478. doi: 10.3934/dcdsb.2004.4.465 
[15] 
JaeMyoung Kim. Local regularity of the magnetohydrodynamics equations near the curved boundary. Communications on Pure & Applied Analysis, 2016, 15 (2) : 507517. doi: 10.3934/cpaa.2016.15.507 
[16] 
W. Layton, R. Lewandowski. On a wellposed turbulence model. Discrete & Continuous Dynamical Systems  B, 2006, 6 (1) : 111128. doi: 10.3934/dcdsb.2006.6.111 
[17] 
Yifei Lou, Sung Ha Kang, Stefano Soatto, Andrea L. Bertozzi. Video stabilization of atmospheric turbulence distortion. Inverse Problems & Imaging, 2013, 7 (3) : 839861. doi: 10.3934/ipi.2013.7.839 
[18] 
Alexandre Boritchev. Decaying turbulence for the fractional subcritical Burgers equation. Discrete & Continuous Dynamical Systems  A, 2018, 38 (5) : 22292249. doi: 10.3934/dcds.2018092 
[19] 
Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete & Continuous Dynamical Systems  B, 2003, 3 (2) : 145162. doi: 10.3934/dcdsb.2003.3.145 
[20] 
Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete & Continuous Dynamical Systems  A, 2010, 26 (3) : 781794. doi: 10.3934/dcds.2010.26.781 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]