
Previous Article
Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions
 DCDSB Home
 This Issue

Next Article
A model for an SI disease in an age  structured population
A 3/2 stability result for a regulated logistic growth model
1.  Department of Applied Mathematics, Central South University, Changsha, Hunan 410083, China 
2.  Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NF, A1C5S7 
[1] 
E. Trofimchuk, Sergei Trofimchuk. Global stability in a regulated logistic growth model. Discrete & Continuous Dynamical Systems  B, 2005, 5 (2) : 461468. doi: 10.3934/dcdsb.2005.5.461 
[2] 
WingCheong Lo, ChingShan Chou, Kimberly K. Gokoffski, Frederic Y.M. Wan, Arthur D. Lander, Anne L. Calof, Qing Nie. Feedback regulation in multistage cell lineages. Mathematical Biosciences & Engineering, 2009, 6 (1) : 5982. doi: 10.3934/mbe.2009.6.59 
[3] 
Chunhua Jin. Global classical solution and stability to a coupled chemotaxisfluid model with logistic source. Discrete & Continuous Dynamical Systems  A, 2018, 38 (7) : 35473566. doi: 10.3934/dcds.2018150 
[4] 
Alexander S. Bratus, Vladimir P. Posvyanskii, Artem S. Novozhilov. A note on the replicator equation with explicit space and global regulation. Mathematical Biosciences & Engineering, 2011, 8 (3) : 659676. doi: 10.3934/mbe.2011.8.659 
[5] 
Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control & Related Fields, 2015, 5 (2) : 359376. doi: 10.3934/mcrf.2015.5.359 
[6] 
István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blowup solutions for a delay logistic equation with positive feedback. Communications on Pure & Applied Analysis, 2018, 17 (6) : 28452854. doi: 10.3934/cpaa.2018134 
[7] 
Orit Lavi, Doron Ginsberg, Yoram Louzoun. Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences & Engineering, 2011, 8 (2) : 445461. doi: 10.3934/mbe.2011.8.445 
[8] 
Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems  A, 2009, 24 (4) : 12151224. doi: 10.3934/dcds.2009.24.1215 
[9] 
Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems  A, 2016, 36 (9) : 50255046. doi: 10.3934/dcds.2016018 
[10] 
Abelardo DuarteRodríguez, Lucas C. F. Ferreira, Élder J. VillamizarRoa. Global existence for an attractionrepulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 423447. doi: 10.3934/dcdsb.2018180 
[11] 
Yacine Chitour, Frédéric Grognard, Georges Bastin. Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks & Heterogeneous Media, 2006, 1 (1) : 219239. doi: 10.3934/nhm.2006.1.219 
[12] 
Jian Chen, Tao Zhang, Ziye Zhang, Chong Lin, Bing Chen. Stability and output feedback control for singular Markovian jump delayed systems. Mathematical Control & Related Fields, 2018, 8 (2) : 475490. doi: 10.3934/mcrf.2018019 
[13] 
Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229240. doi: 10.3934/proc.2001.2001.229 
[14] 
Qingming Gou, Wendi Wang. Global stability of two epidemic models. Discrete & Continuous Dynamical Systems  B, 2007, 8 (2) : 333345. doi: 10.3934/dcdsb.2007.8.333 
[15] 
J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete & Continuous Dynamical Systems  A, 2003, 9 (6) : 16251639. doi: 10.3934/dcds.2003.9.1625 
[16] 
ClaudeMichel Brauner, Xinyue Fan, Luca Lorenzi. Twodimensional stability analysis in a HIV model with quadratic logistic growth term. Communications on Pure & Applied Analysis, 2013, 12 (5) : 18131844. doi: 10.3934/cpaa.2013.12.1813 
[17] 
Ke Lin, Chunlai Mu. Convergence of global and bounded solutions of a twospecies chemotaxis model with a logistic source. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 22332260. doi: 10.3934/dcdsb.2017094 
[18] 
Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolicparabolicODE chemotaxishaptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems  B, 2019, 24 (7) : 33573377. doi: 10.3934/dcdsb.2018324 
[19] 
Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized KelvinVoigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems  S, 2016, 9 (3) : 791813. doi: 10.3934/dcdss.2016029 
[20] 
Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the NavierStokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations & Control Theory, 2015, 4 (1) : 89106. doi: 10.3934/eect.2015.4.89 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]