• Previous Article
    On the uniqueness of bound state solutions of a semilinear equation with weights
  • DCDS Home
  • This Issue
  • Next Article
    Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum
November  2019, 39(11): 6747-6760. doi: 10.3934/dcds.2019293

The jumping problem for nonlocal singular problems

Dipartimento di Matematica e Informatica, Ponte Pietro Bucci 31B, I-87036 Arcavacata di Rende, Cosenza, Italy

*Corresponding author: Berardino Sciunzi

Received  April 2019 Revised  June 2019 Published  August 2019

Fund Project: The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

We consider a jumping problem for nonlocal singular problems. We apply a recent variational approach for nonlocal singular problem, together with a minimax method in the framework of nonsmooth critical point theory.

Citation: Annamaria Canino, Luigi Montoro, Berardino Sciunzi. The jumping problem for nonlocal singular problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6747-6760. doi: 10.3934/dcds.2019293
References:
[1]

H. W. Alt and D. Phillips, A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math., 368 (1986), 63-107. Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7. Google Scholar

[3]

B. BarriosI. De BonisM. Medina and I. Peral, Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407. doi: 10.1515/math-2015-0038. Google Scholar

[4]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations, 37 (2010), 363-380. doi: 10.1007/s00526-009-0266-x. Google Scholar

[5]

A. Canino, Minimax methods for singular elliptic equations with an application to a jumping problem, J. Differential Equations, 221 (2006), 210-223. doi: 10.1016/j.jde.2005.01.015. Google Scholar

[6]

A. Canino, On a jumping problem for quasilinear elliptic equations, Math. Z., 226 (1997), 193-210. doi: 10.1007/PL00004336. Google Scholar

[7]

A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations, J. Convex Anal., 11 (2004), 147-162. Google Scholar

[8]

A. CaninoM. Grandinetti and B. Sciunzi, A jumping problem for some singular semilinear elliptic equations, Adv. Nonlinear Stud., 14 (2014), 1037-1054. doi: 10.1515/ans-2014-0412. Google Scholar

[9]

A. CaninoM. Grandinetti and B. Sciunzi, Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities, J. Differential Equations, 255 (2013), 4437-4447. doi: 10.1016/j.jde.2013.08.014. Google Scholar

[10]

A. Canino, L. Montoro and B. Sciunzi, A variational approach to nonlocal singular problems, preprint, arXiv: 1806.05670.Google Scholar

[11]

A. CaninoL. Montoro and B. Sciunzi, The moving plane method for singular semilinear elliptic problems, Nonlinear Anal., 156 (2017), 61-69. doi: 10.1016/j.na.2017.02.009. Google Scholar

[12]

A. CaninoL. MontoroB. Sciunzi and M. Squassina, Nonlocal problems with singular nonlinearity, Bull. Sci. Math., 141 (2017), 223-250. doi: 10.1016/j.bulsci.2017.01.002. Google Scholar

[13]

M. G. CrandallP. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193-222. doi: 10.1080/03605307708820029. Google Scholar

[14]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[15]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386. Google Scholar

[16]

J. A. GaticaV. Oliker and P. Waltman, Singular nonlinear boundary value problems for second-order ordinary differential equations, J. Differential Equations, 79 (1989), 62-78. doi: 10.1016/0022-0396(89)90113-7. Google Scholar

[17]

A. Groli, Jumping problems for quasilinear elliptic variational inequalities, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 117-147. doi: 10.1007/s00030-002-8121-1. Google Scholar

[18]

N. HiranoC. Saccon and N. Shioji, Multiple existence of positive solutions for singular elliptic problems with concave ad convex nonlinearities, Adv. Differential Equations, 9 (2004), 197-220. Google Scholar

[19]

K. M. Hui, Global and touchdown behaviour of the generalized MEMS device equation, Adv. Math. Sci. Appl., 19 (2009), 347-370. Google Scholar

[20]

B. Kawohl, On a class of singular elliptic equations, in Progress in partial differential equations: Elliptic and parabolic problems (Pont-à-Mousson, 1991), Pitman Res. Notes Math. Ser., 266 (1992), Longman Sci. Tech., Harlow, 156–163. Google Scholar

[21]

A. V. Lair and A. W. Shaker, Classical and weak solutionsof a singular semilinear elliptic problem, J. Math. Anal. Appl., 211 (1977), 371-385. doi: 10.1006/jmaa.1997.5470. Google Scholar

[22]

A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730. doi: 10.1090/S0002-9939-1991-1037213-9. Google Scholar

[23]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795–826. doi: 10.1007/s00526-013-0600-1. Google Scholar

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. doi: 10.3934/dcds.2013.33.2105. Google Scholar

[25]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133–154. doi: 10.5565/PUBLMAT_58114_06. Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970. Google Scholar

[27]

C. A. Stuart, Existence and approximation of solutions of non-linear elliptic equations, Math. Z., 147 (1976), 53-63. doi: 10.1007/BF01214274. Google Scholar

[28]

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77-109. doi: 10.1016/S0294-1449(16)30389-4. Google Scholar

[29]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49 (2009), 33-44. Google Scholar

show all references

References:
[1]

H. W. Alt and D. Phillips, A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math., 368 (1986), 63-107. Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7. Google Scholar

[3]

B. BarriosI. De BonisM. Medina and I. Peral, Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407. doi: 10.1515/math-2015-0038. Google Scholar

[4]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations, 37 (2010), 363-380. doi: 10.1007/s00526-009-0266-x. Google Scholar

[5]

A. Canino, Minimax methods for singular elliptic equations with an application to a jumping problem, J. Differential Equations, 221 (2006), 210-223. doi: 10.1016/j.jde.2005.01.015. Google Scholar

[6]

A. Canino, On a jumping problem for quasilinear elliptic equations, Math. Z., 226 (1997), 193-210. doi: 10.1007/PL00004336. Google Scholar

[7]

A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations, J. Convex Anal., 11 (2004), 147-162. Google Scholar

[8]

A. CaninoM. Grandinetti and B. Sciunzi, A jumping problem for some singular semilinear elliptic equations, Adv. Nonlinear Stud., 14 (2014), 1037-1054. doi: 10.1515/ans-2014-0412. Google Scholar

[9]

A. CaninoM. Grandinetti and B. Sciunzi, Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities, J. Differential Equations, 255 (2013), 4437-4447. doi: 10.1016/j.jde.2013.08.014. Google Scholar

[10]

A. Canino, L. Montoro and B. Sciunzi, A variational approach to nonlocal singular problems, preprint, arXiv: 1806.05670.Google Scholar

[11]

A. CaninoL. Montoro and B. Sciunzi, The moving plane method for singular semilinear elliptic problems, Nonlinear Anal., 156 (2017), 61-69. doi: 10.1016/j.na.2017.02.009. Google Scholar

[12]

A. CaninoL. MontoroB. Sciunzi and M. Squassina, Nonlocal problems with singular nonlinearity, Bull. Sci. Math., 141 (2017), 223-250. doi: 10.1016/j.bulsci.2017.01.002. Google Scholar

[13]

M. G. CrandallP. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193-222. doi: 10.1080/03605307708820029. Google Scholar

[14]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[15]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386. Google Scholar

[16]

J. A. GaticaV. Oliker and P. Waltman, Singular nonlinear boundary value problems for second-order ordinary differential equations, J. Differential Equations, 79 (1989), 62-78. doi: 10.1016/0022-0396(89)90113-7. Google Scholar

[17]

A. Groli, Jumping problems for quasilinear elliptic variational inequalities, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 117-147. doi: 10.1007/s00030-002-8121-1. Google Scholar

[18]

N. HiranoC. Saccon and N. Shioji, Multiple existence of positive solutions for singular elliptic problems with concave ad convex nonlinearities, Adv. Differential Equations, 9 (2004), 197-220. Google Scholar

[19]

K. M. Hui, Global and touchdown behaviour of the generalized MEMS device equation, Adv. Math. Sci. Appl., 19 (2009), 347-370. Google Scholar

[20]

B. Kawohl, On a class of singular elliptic equations, in Progress in partial differential equations: Elliptic and parabolic problems (Pont-à-Mousson, 1991), Pitman Res. Notes Math. Ser., 266 (1992), Longman Sci. Tech., Harlow, 156–163. Google Scholar

[21]

A. V. Lair and A. W. Shaker, Classical and weak solutionsof a singular semilinear elliptic problem, J. Math. Anal. Appl., 211 (1977), 371-385. doi: 10.1006/jmaa.1997.5470. Google Scholar

[22]

A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730. doi: 10.1090/S0002-9939-1991-1037213-9. Google Scholar

[23]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795–826. doi: 10.1007/s00526-013-0600-1. Google Scholar

[24]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. doi: 10.3934/dcds.2013.33.2105. Google Scholar

[25]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133–154. doi: 10.5565/PUBLMAT_58114_06. Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970. Google Scholar

[27]

C. A. Stuart, Existence and approximation of solutions of non-linear elliptic equations, Math. Z., 147 (1976), 53-63. doi: 10.1007/BF01214274. Google Scholar

[28]

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77-109. doi: 10.1016/S0294-1449(16)30389-4. Google Scholar

[29]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49 (2009), 33-44. Google Scholar

[1]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[2]

Alberto Cabada, J. Ángel Cid. Heteroclinic solutions for non-autonomous boundary value problems with singular $\Phi$-Laplacian operators. Conference Publications, 2009, 2009 (Special) : 118-122. doi: 10.3934/proc.2009.2009.118

[3]

Maria Fărcăşeanu, Mihai Mihăilescu, Denisa Stancu-Dumitru. Perturbed fractional eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6243-6255. doi: 10.3934/dcds.2017270

[4]

Jacques Giacomoni, Tuhina Mukherjee, Konijeti Sreenadh. Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 311-337. doi: 10.3934/dcdss.2019022

[5]

Paulo Cesar Carrião, R. Demarque, Olímpio H. Miyagaki. Nonlinear Biharmonic Problems with Singular Potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2141-2154. doi: 10.3934/cpaa.2014.13.2141

[6]

Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems. Networks & Heterogeneous Media, 2008, 3 (3) : 523-554. doi: 10.3934/nhm.2008.3.523

[7]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[8]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

[9]

Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091

[10]

Ida De Bonis, Daniela Giachetti. Singular parabolic problems with possibly changing sign data. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2047-2064. doi: 10.3934/dcdsb.2014.19.2047

[11]

M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223

[12]

Eunkyoung Ko, Eun Kyoung Lee, R. Shivaji. Multiplicity results for classes of singular problems on an exterior domain. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5153-5166. doi: 10.3934/dcds.2013.33.5153

[13]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[14]

Maria Assunta Pozio, Fabio Punzo, Alberto Tesei. Uniqueness and nonuniqueness of solutions to parabolic problems with singular coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 891-916. doi: 10.3934/dcds.2011.30.891

[15]

Senoussi Guesmia, Abdelmouhcene Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 567-580. doi: 10.3934/dcdss.2012.5.567

[16]

Andrzej Szulkin, Shoyeb Waliullah. Infinitely many solutions for some singular elliptic problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 321-333. doi: 10.3934/dcds.2013.33.321

[17]

Maria Assunta Pozio, Alberto Tesei. On the uniqueness of bounded solutions to singular parabolic problems. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 117-137. doi: 10.3934/dcds.2005.13.117

[18]

Andrea Braides, Valeria Chiadò Piat. Non convex homogenization problems for singular structures. Networks & Heterogeneous Media, 2008, 3 (3) : 489-508. doi: 10.3934/nhm.2008.3.489

[19]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[20]

Dina Tavares, Ricardo Almeida, Delfim F. M. Torres. Fractional Herglotz variational problems of variable order. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 143-154. doi: 10.3934/dcdss.2018009

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (55)
  • HTML views (116)
  • Cited by (0)

[Back to Top]