American Institute of Mathematical Sciences

• Previous Article
Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms
• DCDS Home
• This Issue
• Next Article
Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature
doi: 10.3934/dcds.2019226

A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation

 1 Dipartimento di Matematica, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy 2 Istituto per le Applicazioni del Calcolo Mauro Picone, CNR, Rome, Italy 3 CNRS, Laboratoire de Mathématique, Analyse Numérique et EDP, Université de Paris-Sud, F-91405 Orsay Cedex, France 4 Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan 5 Faculty of Engineering, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo, 135-8181, Japan 6 Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan 7 Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata, Kitakyushu, 804-8550, Japan

* Corresponding author: Hirofumi Izuhara

Received  April 2018 Revised  October 2018 Published  June 2019

We consider a mathematical model describing population dynamics of normal and abnormal cell densities with contact inhibition of cell growth from a theoretical point of view. In the first part of this paper, we discuss the global existence of a solution satisfying the segregation property in one space dimension for general initial data. Here, the term segregation property means that the different types of cells keep spatially segregated when the initial densities are segregated. The second part is devoted to singular limit problems for solutions of the PDE system and traveling wave solutions, respectively. Actually, the contact inhibition model considered in this paper possesses quite similar properties to those of the Fisher-KPP equation. In particular, the limit problems reveal a relation between the contact inhibition model and the Fisher-KPP equation.

Citation: Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2019226
References:
 [1] M. Abercrombie, Contact inhibition in tissue culture, In Vitro, 6 (1970), 128-142. doi: 10.1007/BF02616114. [2] L. Ambrosio, F. Bouchut and C. De Lellis, Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Comm. Partial Diff. Equ., 29 (2004), 1635-1651. doi: 10.1081/PDE-200040210. [3] M. Bertsch, R. Dal Passo and M. Mimura, A free boundary problem arising in a simplifies tumour growth model of contact inhibition, Interfaces Free Boundaries, 12 (2010), 235-250. doi: 10.4171/IFB/233. [4] M. Bertsch, D. Hilhorst, H. Izuhara and and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, Diff. Eq. Appl., 12 (2010), 235-250. doi: 10.7153/dea-04-09. [5] M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Traveling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth, European J. Appl. Math., 26 (2015), 297-323. doi: 10.1017/S0956792515000042. [6] M. Bertsch, M. Mimura and T. Wakasa, Modeling contact inhibition of growth: Traveling waves, Netw. Heterog. Media, 8 (2012), 131-147. doi: 10.3934/nhm.2013.8.131. [7] M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, (in preparation). [8] M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, Standing and traveling waves in a parabolic-hyperbolic system, to appear in Discret. Contin. Dyn. Syst. Ser. A. doi: 10.3934/nhm.2013.8.131. [9] Z. Biró, Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type, Advanced Nonlinear Studies, 2 (2002), 357-371. doi: 10.1515/ans-2002-0402. [10] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Applied Mathematical Sciences, 183, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0. [11] H. Brezis, Analyse Fonctionnelle, Masson, 1983. [12] J. A. Carrillo, S. Fagioli, F. Santambrogio and M. Schmidtchen, Splitting schemes and segregation in reaction cross-diffusion systems, SIAM J. Math. Anal., 50 (2018), 5695-5718. doi: 10.1137/17M1158379. [13] M. Chaplain, L. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Math. Med. Biol., 23 (2006), 197-229. doi: 10.1093/imammb/dql009. [14] C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations, in Handbook of Differential Equations: Evolutionary Differential Equations, (2006), 277–382. doi: 10.1016/S1874-5717(07)80007-7. [15] E. Dibenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32 (1983), 83-118. doi: 10.1512/iumj.1983.32.32008. [16] J. Goncerzewicz and D. Hilhorst, Large time behavior of a class of solutions of second order conservation laws, Banach Center Publ., 52 (2000), 119-132. [17] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, 23, Amer. Math. Soc., Providence, R.I. 1968. [18] L. A. Peletier, The porous media equation, in Application of Nonlinear Analysis in the Physical Sciences, Pitman, Boston, 1981,229–241. [19] J. Sherratt, Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2365-2386. doi: 10.1098/rspa.2000.0616. [20] J. Sherratt and M. Chaplain, A new mathematical model for avascular tumour growth, J. Math. Biol., 43 (2001), 291-312. doi: 10.1007/s002850100088.

show all references

References:
 [1] M. Abercrombie, Contact inhibition in tissue culture, In Vitro, 6 (1970), 128-142. doi: 10.1007/BF02616114. [2] L. Ambrosio, F. Bouchut and C. De Lellis, Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Comm. Partial Diff. Equ., 29 (2004), 1635-1651. doi: 10.1081/PDE-200040210. [3] M. Bertsch, R. Dal Passo and M. Mimura, A free boundary problem arising in a simplifies tumour growth model of contact inhibition, Interfaces Free Boundaries, 12 (2010), 235-250. doi: 10.4171/IFB/233. [4] M. Bertsch, D. Hilhorst, H. Izuhara and and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, Diff. Eq. Appl., 12 (2010), 235-250. doi: 10.7153/dea-04-09. [5] M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Traveling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth, European J. Appl. Math., 26 (2015), 297-323. doi: 10.1017/S0956792515000042. [6] M. Bertsch, M. Mimura and T. Wakasa, Modeling contact inhibition of growth: Traveling waves, Netw. Heterog. Media, 8 (2012), 131-147. doi: 10.3934/nhm.2013.8.131. [7] M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, (in preparation). [8] M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, Standing and traveling waves in a parabolic-hyperbolic system, to appear in Discret. Contin. Dyn. Syst. Ser. A. doi: 10.3934/nhm.2013.8.131. [9] Z. Biró, Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type, Advanced Nonlinear Studies, 2 (2002), 357-371. doi: 10.1515/ans-2002-0402. [10] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Applied Mathematical Sciences, 183, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0. [11] H. Brezis, Analyse Fonctionnelle, Masson, 1983. [12] J. A. Carrillo, S. Fagioli, F. Santambrogio and M. Schmidtchen, Splitting schemes and segregation in reaction cross-diffusion systems, SIAM J. Math. Anal., 50 (2018), 5695-5718. doi: 10.1137/17M1158379. [13] M. Chaplain, L. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Math. Med. Biol., 23 (2006), 197-229. doi: 10.1093/imammb/dql009. [14] C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations, in Handbook of Differential Equations: Evolutionary Differential Equations, (2006), 277–382. doi: 10.1016/S1874-5717(07)80007-7. [15] E. Dibenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32 (1983), 83-118. doi: 10.1512/iumj.1983.32.32008. [16] J. Goncerzewicz and D. Hilhorst, Large time behavior of a class of solutions of second order conservation laws, Banach Center Publ., 52 (2000), 119-132. [17] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, 23, Amer. Math. Soc., Providence, R.I. 1968. [18] L. A. Peletier, The porous media equation, in Application of Nonlinear Analysis in the Physical Sciences, Pitman, Boston, 1981,229–241. [19] J. Sherratt, Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2365-2386. doi: 10.1098/rspa.2000.0616. [20] J. Sherratt and M. Chaplain, A new mathematical model for avascular tumour growth, J. Math. Biol., 43 (2001), 291-312. doi: 10.1007/s002850100088.
Snapshots of dynamics in (1) with compactly supported initial data. The parameter values are $\alpha = 4$, $\beta = 3$, $\gamma = 1$ and $k = 0.5$. The solid and dashed curves indicate $u$ and $v$, respectively
The relation between the parameter $k$ and the wave velocity $c_k^*$, where the horizontal and vertical axes indicate $k$ and $c_k^*$, respectively. The other parameter values are $\alpha = 4$, $\beta = 3$ and $\gamma = 1$
$(\varphi, \psi)$-phase planes for (40) with $k = 2$ and $\gamma = 1$ : (0) $c = 0$, (i) $c = 0.8$, (ii) $c = 1$, (iii) $c = 1.2$
 [1] Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1 [2] Lina Wang, Xueli Bai, Yang Cao. Exponential stability of the traveling fronts for a viscous Fisher-KPP equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 801-815. doi: 10.3934/dcdsb.2014.19.801 [3] Aijun Zhang. Traveling wave solutions with mixed dispersal for spatially periodic Fisher-KPP equations. Conference Publications, 2013, 2013 (special) : 815-824. doi: 10.3934/proc.2013.2013.815 [4] Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation when initial data have slow exponential decay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 15-29. doi: 10.3934/dcdsb.2011.16.15 [5] Matt Holzer. A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2069-2084. doi: 10.3934/dcds.2016.36.2069 [6] Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087 [7] Christian Kuehn, Pasha Tkachov. Pattern formation in the doubly-nonlocal Fisher-KPP equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2077-2100. doi: 10.3934/dcds.2019087 [8] Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275 [9] M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 [10] Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785 [11] Aaron Hoffman, Matt Holzer. Invasion fronts on graphs: The Fisher-KPP equation on homogeneous trees and Erdős-Réyni graphs. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 671-694. doi: 10.3934/dcdsb.2018202 [12] Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227 [13] Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303 [14] Benjamin Contri. Fisher-KPP equations and applications to a model in medical sciences. Networks & Heterogeneous Media, 2018, 13 (1) : 119-153. doi: 10.3934/nhm.2018006 [15] François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks & Heterogeneous Media, 2013, 8 (1) : 275-289. doi: 10.3934/nhm.2013.8.275 [16] Wenxian Shen, Zhongwei Shen. Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1193-1213. doi: 10.3934/cpaa.2016.15.1193 [17] Margarita Arias, Juan Campos, Cristina Marcelli. Fastness and continuous dependence in front propagation in Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 11-30. doi: 10.3934/dcdsb.2009.11.11 [18] Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133 [19] Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699 [20] M. Grasselli, Hana Petzeltová, Giulio Schimperna. Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 827-838. doi: 10.3934/cpaa.2006.5.827

2017 Impact Factor: 1.179