May 2019, 39(5): 2961-2976. doi: 10.3934/dcds.2019123

Smoothing property for the $ L^2 $-critical high-order NLS Ⅱ

Laboratoire Paul Painlevé (U.M.R. CNRS 8524), U.F.R. de Mathématiques, Université Lille 1, 59655 Villeneuve d'Ascq Cedex, France

Received  October 2018 Published  January 2019

Fund Project: This research was supported by Labex CEMPI (ANR-11-LABX-0007-01)

The paper reconsiders the issue of the regularity of the Duhamel part of the solution to the $ L^2 $-critical high-order NLS already studied by the authors in [4]. This model includes the mass critical 4D fourth order NLS. The improvement is due to the use of a more sophisticated space involving a nonlinear term and taking profit of a suitable trilinear Strichartz estimate.

Citation: Abdelwahab Bensouilah, Sahbi Keraani. Smoothing property for the $ L^2 $-critical high-order NLS Ⅱ. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2961-2976. doi: 10.3934/dcds.2019123
References:
[1]

H. Bahouri, J-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

P. Bégout and A. Vargas, Mass concentration phenomena for the L2-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 5257-5282. doi: 10.1090/S0002-9947-07-04250-X.

[3]

M. Ben-Artzi, H. Koch and J. C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Math. Acad. Sci., Paris, 330 (2000), 87–92. doi: 10.1016/S0764-4442(00)00120-8.

[4]

A. Bensouilah and S. Keraani, Smoothing property for the mass critical high-order Schrödinger equation Ⅰ, preprint, April 2018, submitted.

[5]

J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14 (1981), 209-246. doi: 10.24033/asens.1404.

[6]

J. Bourgain, Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not., (1998), 253-283. doi: 10.1155/S1073792898000191.

[7]

M. ChaeS. Hong and S. Lee, Mass concentration for the L2-critical nonlinear Schrödinger equations of higher orders, Discrete Contin. Dyn. Syst., 29 (2011), 909-928. doi: 10.3934/dcds.2011.29.909.

[8]

P. Constantin and J. C. Saut, Local smoothing properties of dispersive equations, Journal of the American Mathematical Society, 1 (1988), 413-439. doi: 10.1090/S0894-0347-1988-0928265-0.

[9]

G. FibichB. Ilan and G. Papanicolaou, Self-focusing with fourth order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462. doi: 10.1137/S0036139901387241.

[10]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339.

[11]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys D., 144 (2000), 194-210. doi: 10.1016/S0167-2789(00)00078-6.

[12]

S. Keraani and A. Vargas, A smoothing property for the $L^2$-critical NLS equations and an application to blowup theory, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 745-762. doi: 10.1016/j.anihpc.2008.03.001.

[13]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext, Springer, New York, 2009.

[14]

T. Oh and N. Tzvetkov, Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, Probab. Theory Related Fields, 169 (2017), 1121-1168. doi: 10.1007/s00440-016-0748-7.

[15]

____, On the transport of Gaussian measures under the flow of Hamiltonian PDEs, Sémin. Equ. Dériv. Partielles. 2015-2016, Exp. No. 6, 9 pp.

[16]

T. Oh, N. Tzvetkov and Y. Wang, Solving the 4NLS with white noise initial data, preprint.

[17]

B. Pausader, Global well-posedness for energy criticalfourth-order Schrödinger equations in the radial case, Dynamics of PDE, 4 (2007), 197-225. doi: 10.4310/DPDE.2007.v4.n3.a1.

[18]

B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517. doi: 10.1016/j.jfa.2008.11.009.

[19]

B. Pausader and S. Shao, The mass-critical fourth-order Schrödinger equation in high dimensions, J. Hyp. Differ. Equ., 7 (2010), 651-705. doi: 10.1142/S0219891610002256.

[20]

P. Sjölin, Regularity of solutions to the Schrödinger equations, Duke Math. J., 55 (1987), 699-715. doi: 10.1215/S0012-7094-87-05535-9.

[21]

L. Vega, Schrödinger equation: Pointwise convergence to the initial data, Proc. Am. Math. Soc., 102 (1988), 874-878. doi: 10.2307/2047326.

show all references

References:
[1]

H. Bahouri, J-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

P. Bégout and A. Vargas, Mass concentration phenomena for the L2-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 5257-5282. doi: 10.1090/S0002-9947-07-04250-X.

[3]

M. Ben-Artzi, H. Koch and J. C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Math. Acad. Sci., Paris, 330 (2000), 87–92. doi: 10.1016/S0764-4442(00)00120-8.

[4]

A. Bensouilah and S. Keraani, Smoothing property for the mass critical high-order Schrödinger equation Ⅰ, preprint, April 2018, submitted.

[5]

J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14 (1981), 209-246. doi: 10.24033/asens.1404.

[6]

J. Bourgain, Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not., (1998), 253-283. doi: 10.1155/S1073792898000191.

[7]

M. ChaeS. Hong and S. Lee, Mass concentration for the L2-critical nonlinear Schrödinger equations of higher orders, Discrete Contin. Dyn. Syst., 29 (2011), 909-928. doi: 10.3934/dcds.2011.29.909.

[8]

P. Constantin and J. C. Saut, Local smoothing properties of dispersive equations, Journal of the American Mathematical Society, 1 (1988), 413-439. doi: 10.1090/S0894-0347-1988-0928265-0.

[9]

G. FibichB. Ilan and G. Papanicolaou, Self-focusing with fourth order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462. doi: 10.1137/S0036139901387241.

[10]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339.

[11]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys D., 144 (2000), 194-210. doi: 10.1016/S0167-2789(00)00078-6.

[12]

S. Keraani and A. Vargas, A smoothing property for the $L^2$-critical NLS equations and an application to blowup theory, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 745-762. doi: 10.1016/j.anihpc.2008.03.001.

[13]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext, Springer, New York, 2009.

[14]

T. Oh and N. Tzvetkov, Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, Probab. Theory Related Fields, 169 (2017), 1121-1168. doi: 10.1007/s00440-016-0748-7.

[15]

____, On the transport of Gaussian measures under the flow of Hamiltonian PDEs, Sémin. Equ. Dériv. Partielles. 2015-2016, Exp. No. 6, 9 pp.

[16]

T. Oh, N. Tzvetkov and Y. Wang, Solving the 4NLS with white noise initial data, preprint.

[17]

B. Pausader, Global well-posedness for energy criticalfourth-order Schrödinger equations in the radial case, Dynamics of PDE, 4 (2007), 197-225. doi: 10.4310/DPDE.2007.v4.n3.a1.

[18]

B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517. doi: 10.1016/j.jfa.2008.11.009.

[19]

B. Pausader and S. Shao, The mass-critical fourth-order Schrödinger equation in high dimensions, J. Hyp. Differ. Equ., 7 (2010), 651-705. doi: 10.1142/S0219891610002256.

[20]

P. Sjölin, Regularity of solutions to the Schrödinger equations, Duke Math. J., 55 (1987), 699-715. doi: 10.1215/S0012-7094-87-05535-9.

[21]

L. Vega, Schrödinger equation: Pointwise convergence to the initial data, Proc. Am. Math. Soc., 102 (1988), 874-878. doi: 10.2307/2047326.

[1]

Vladimir Georgiev, Atanas Stefanov, Mirko Tarulli. Smoothing-Strichartz estimates for the Schrodinger equation with small magnetic potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 771-786. doi: 10.3934/dcds.2007.17.771

[2]

Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549

[3]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

[4]

Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723

[5]

Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3387-3410. doi: 10.3934/dcds.2017143

[6]

Younghun Hong, Changhun Yang. Uniform Strichartz estimates on the lattice. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3239-3264. doi: 10.3934/dcds.2019134

[7]

Marc Wolff, Stéphane Jaouen, Hervé Jourdren, Eric Sonnendrücker. High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 345-367. doi: 10.3934/dcdss.2012.5.345

[8]

Raymond H. Chan, Haixia Liang, Suhua Wei, Mila Nikolova, Xue-Cheng Tai. High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems & Imaging, 2015, 9 (1) : 55-77. doi: 10.3934/ipi.2015.9.55

[9]

Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems & Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039

[10]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[11]

Phillip Colella. High-order finite-volume methods on locally-structured grids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4247-4270. doi: 10.3934/dcds.2016.36.4247

[12]

Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541

[13]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[14]

Gong Chen. Strichartz estimates for charge transfer models. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1201-1226. doi: 10.3934/dcds.2017050

[15]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[16]

Ahmed El Kaimbillah, Oussama Bourihane, Bouazza Braikat, Mohammad Jamal, Foudil Mohri, Noureddine Damil. Efficient high-order implicit solvers for the dynamic of thin-walled beams with open cross section under external arbitrary loadings. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1685-1708. doi: 10.3934/dcdss.2019113

[17]

Florian Schneider, Jochen Kall, Graham Alldredge. A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic & Related Models, 2016, 9 (1) : 193-215. doi: 10.3934/krm.2016.9.193

[18]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[19]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[20]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (56)
  • HTML views (99)
  • Cited by (0)

Other articles
by authors

[Back to Top]