May 2019, 39(5): 2763-2783. doi: 10.3934/dcds.2019116

Local wellposedness for the critical nonlinear Schrödinger equation on $ \mathbb{T}^3 $

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA

Received  June 2018 Revised  October 2018 Published  January 2019

Fund Project: This work was supported by NSF grants DMS-1265868, DMS-1600942 (principal investigator: Rowan Killip) and DMS-1500707 (principal investigator: Monica Vişan)

For $ p\geq 2 $, we prove local wellposedness for the nonlinear Schrödinger equation $ (i\partial _t + \Delta)u = \pm|u|^pu $ on $ \mathbb{T}^3 $ with initial data in $ H^{s_c}(\mathbb{T}^3) $, where $ \mathbb{T}^3 $ is a rectangular irrational $ 3 $-torus and $ s_c = \frac{3}{2} - \frac{2}{p} $ is the scaling-critical regularity. This extends work of earlier authors on the local Cauchy theory for NLS on $ \mathbb{T}^3 $ with power nonlinearities where $ p $ is an even integer.

Citation: Gyu Eun Lee. Local wellposedness for the critical nonlinear Schrödinger equation on $ \mathbb{T}^3 $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2763-2783. doi: 10.3934/dcds.2019116
References:
[1]

J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14 (1981), 209-246. doi: 10.24033/asens.1404.

[2]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156. doi: 10.1007/BF01896020.

[3]

J. Bourgain and C. Demeter, The proof of the $l^2$ decoupling conjecture, Ann. of Math. (2), 182 (2015), 351-389. doi: 10.4007/annals.2015.182.1.9.

[4]

F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109. doi: 10.1016/0022-1236(91)90103-C.

[5]

Z. GuoT. Oh and Y. Wang, Strichartz estimates for Schrödinger equations on irrational tori, Proc. Lond. Math. Soc., 109 (2014), 975-1013. doi: 10.1112/plms/pdu025.

[6]

M. HadacS. Herr and H. Koch, Well-posedness and scattering for the KP-Ⅱ equation in a critical space, Ann. I. H. Poincare, 26 (2009), 917-941. doi: 10.1016/j.anihpc.2008.04.002.

[7]

S. HerrD. Tataru and N. Tzvetkov, Strichartz estimates for partially periodic solutions to Schrödinger equations in 4d and applications, J. Reine Angew. Math, 2014 (2012), 65-78. doi: 10.1515/crelle-2012-0013.

[8]

S. HerrD. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(\mathbb T^3)$, Duke Math. J., 159 (2011), 329-349. doi: 10.1215/00127094-1415889.

[9]

A. D. Ionescu and B. Pausauder, The energy-critical defocusing NLS on $\mathbb T^3$, Duke Math. J., 161 (2012), 1581-1612. doi: 10.1215/00127094-1593335.

[10]

R. Killip and M. Vişan, Scale invariant Strichartz estimates on tori and applications, Math. Res. Lett., 23 (2016), 445-472. doi: 10.4310/MRL.2016.v23.n2.a8.

[11]

R. Killip and M. Vişan, Nonlinear Schrödinger equations at critical regularity, in "Evolution Equations", Clay Math. Proc., 17, (eds. D. Ellwood, I. Rodnianski, G. Staffilani and J. Wunsch), Amer. Math. Soc., Providence, RI, (2013), 325–437.

[12]

H. Koch, D. Tataru and M. Vişan, Dispersive Equations and Nonlinear Waves, Oberwolfach Seminars 45, Springer, Basel, 2014.

[13]

N. Strunk, Strichartz estimates for Schrödinger equations on irrational tori in two and three dimensions, J. Evol. Equ., 14 (2014), 829-839. doi: 10.1007/s00028-014-0240-8.

[14]

M. Taylor, Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Amer. Math. Soc., Providence, RI, 2000.

show all references

References:
[1]

J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14 (1981), 209-246. doi: 10.24033/asens.1404.

[2]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156. doi: 10.1007/BF01896020.

[3]

J. Bourgain and C. Demeter, The proof of the $l^2$ decoupling conjecture, Ann. of Math. (2), 182 (2015), 351-389. doi: 10.4007/annals.2015.182.1.9.

[4]

F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109. doi: 10.1016/0022-1236(91)90103-C.

[5]

Z. GuoT. Oh and Y. Wang, Strichartz estimates for Schrödinger equations on irrational tori, Proc. Lond. Math. Soc., 109 (2014), 975-1013. doi: 10.1112/plms/pdu025.

[6]

M. HadacS. Herr and H. Koch, Well-posedness and scattering for the KP-Ⅱ equation in a critical space, Ann. I. H. Poincare, 26 (2009), 917-941. doi: 10.1016/j.anihpc.2008.04.002.

[7]

S. HerrD. Tataru and N. Tzvetkov, Strichartz estimates for partially periodic solutions to Schrödinger equations in 4d and applications, J. Reine Angew. Math, 2014 (2012), 65-78. doi: 10.1515/crelle-2012-0013.

[8]

S. HerrD. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(\mathbb T^3)$, Duke Math. J., 159 (2011), 329-349. doi: 10.1215/00127094-1415889.

[9]

A. D. Ionescu and B. Pausauder, The energy-critical defocusing NLS on $\mathbb T^3$, Duke Math. J., 161 (2012), 1581-1612. doi: 10.1215/00127094-1593335.

[10]

R. Killip and M. Vişan, Scale invariant Strichartz estimates on tori and applications, Math. Res. Lett., 23 (2016), 445-472. doi: 10.4310/MRL.2016.v23.n2.a8.

[11]

R. Killip and M. Vişan, Nonlinear Schrödinger equations at critical regularity, in "Evolution Equations", Clay Math. Proc., 17, (eds. D. Ellwood, I. Rodnianski, G. Staffilani and J. Wunsch), Amer. Math. Soc., Providence, RI, (2013), 325–437.

[12]

H. Koch, D. Tataru and M. Vişan, Dispersive Equations and Nonlinear Waves, Oberwolfach Seminars 45, Springer, Basel, 2014.

[13]

N. Strunk, Strichartz estimates for Schrödinger equations on irrational tori in two and three dimensions, J. Evol. Equ., 14 (2014), 829-839. doi: 10.1007/s00028-014-0240-8.

[14]

M. Taylor, Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Amer. Math. Soc., Providence, RI, 2000.

[1]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[2]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[3]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[4]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[5]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[6]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[7]

Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253

[8]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[9]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[10]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[11]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[12]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[13]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[14]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[15]

Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259

[16]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[17]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[18]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[19]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[20]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (39)
  • HTML views (94)
  • Cited by (0)

Other articles
by authors

[Back to Top]