May 2019, 39(5): 2731-2742. doi: 10.3934/dcds.2019114

Explicit estimates on positive supersolutions of nonlinear elliptic equations and applications

1. 

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

2. 

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada

Received  May 2018 Revised  September 2018 Published  January 2019

Fund Project: The research of the second author was supported in part by NSERC

In this paper we consider positive supersolutions of the nonlinear elliptic equation
$ - \Delta u = \rho(x) f(u)|\nabla u|^p, ~~~~ {\rm{ in }}~~~~ \Omega, $
where
$ 0\le p<1 $
,
$ \Omega $
is an arbitrary domain (bounded or unbounded) in
$ {\mathbb{R}}^N $
(
$ N\ge 2 $
),
$ f: [0, a_{f}) \rightarrow {\mathbb{R}}_{+} $
$ (0 < a_{f} \leq +\infty) $
is a non-decreasing continuous function and
$ \rho: \Omega \rightarrow \mathbb{R} $
is a positive function. Using the maximum principle we give explicit estimates on positive supersolutions
$ u $
at each point
$ x\in\Omega $
where
$ \nabla u\not\equiv0 $
in a neighborhood of
$ x $
. As applications, we discuss the dead core set of supersolutions on bounded domains, and also obtain Liouville type results in unbounded domains
$ \Omega $
with the property that
$ \sup_{x\in\Omega}dist (x, \partial\Omega) = \infty $
. In particular when
$ \rho(x) = |x|^\beta $
(
$ \beta\in {\mathbb{R}} $
) and
$ f(u) = u^q $
with
$ q+p>1 $
then every positive supersolution in an exterior domain is eventually constant if
$ (N-2)q+p(N-1)< N+\beta. $
Citation: Asadollah Aghajani, Craig Cowan. Explicit estimates on positive supersolutions of nonlinear elliptic equations and applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2731-2742. doi: 10.3934/dcds.2019114
References:
[1]

S. AlarconJ. Garcia-Melian and A. Quaas, Liouville type theorems for elliptic equations with gradient terms, Milan J. Math., 81 (2013), 171-185. doi: 10.1007/s00032-013-0197-z.

[2]

S. AlarconJ. Garcia-Melian and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems, J. Math. Pures Appl., 99 (2013), 618-634. doi: 10.1016/j.matpur.2012.10.001.

[3]

S. AlarconJ. Garcia-Melian and A. Quaas, Existence and non-existence of solutions to elliptic equations with a general convection term, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 225-239. doi: 10.1017/S030821051200100X.

[4]

S. AlarconJ. Garcia-Melian and A. Quaas, Keller-Osserman type conditions for some elliptic problems with gradient terms, J. Differential Equations, 252 (2012), 886-914. doi: 10.1016/j.jde.2011.09.033.

[5]

D. ArcoyaC. De CosterL. Jeanjean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal., 268 (2015), 2298-2335. doi: 10.1016/j.jfa.2015.01.014.

[6]

S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Part. Diff. Eqns., 36 (2011), 2011-2047. doi: 10.1080/03605302.2010.534523.

[7]

S. N. Armstrong and B. Sirakov, Liouville results for fully nonlinear elliptic equations with power growth nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10 (2011), 711–728, arXiv: 1001.4489. [math.AP].

[8]

H. BerestyckiF. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems Ⅰ. Periodic framework, J. Europ. Math. Soc., 7 (2005), 173-213. doi: 10.4171/JEMS/26.

[9]

H. Berestycki, F. Hamel and L. Rossi, Liouville type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl., (4) 186 (2007), 469–507. doi: 10.1007/s10231-006-0015-0.

[10]

M. F. Bidaut-Veron, M. Garcia-Huidobro and L. Veron, Estimates of solutions of elliptic equations with a source reaction term involving the product of the function and its gradient, available at https://arXiv.org/pdf/1711.11489.pdf

[11]

M. F. Bidaut-Veron, Local and global behavior of solutions of quasilinear equations of EmdenFowler type, Arch. Rat. Mech. Anal., 107 (1989), 293-324. doi: 10.1007/BF00251552.

[12]

M. F. Bidaut-VeronM. Garcia-Huidobro and L. Veron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Calc. Var. Part. Diff. Equ., 54 (2015), 3471-3515. doi: 10.1007/s00526-015-0911-5.

[13]

I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse, 13 (2004), 261-287. doi: 10.5802/afst.1070.

[14]

M. A. Burgos-PerezJ. Garcia Melian and A. Quaas, Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems, Discrete Contin. Dyn. Syst., 36 (2016), 4703-4721. doi: 10.3934/dcds.2016004.

[15]

G. Caristi and E. Mitidieri, Nonexistence of positive solutions of quasilinear equations, Adv. Diff. Equ., 2 (1997), 317-359.

[16]

H. Chen and P. Felmer, On Liouville type theorems for fully nonlinear elliptic equations with gradient term, J. Differential Equations, 255 (2013), 2167-2195. doi: 10.1016/j.jde.2013.06.009.

[17]

P. FelmerA. Quaas and B. Sirakov, Solvability of nonlinear elliptic equations with gradient terms, J. Diff. Eq., 254 (2013), 4327-4346. doi: 10.1016/j.jde.2013.03.003.

[18]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916. doi: 10.1016/j.na.2008.12.018.

[19]

L. Jeanjean and B. Sirakov, Existence and multiplicity for elliptic problems with quadratic growth in the gradient, Comm. Part. Diff. Eq., 38 (2013), 244-264. doi: 10.1080/03605302.2012.738754.

[20]

L. Rossi, Non-existence of positive solutions of fully nonlinear elliptic bounded domains, Commun. Pure Appl. Anal., 7 (2008), 125-141. doi: 10.3934/cpaa.2008.7.125.

[21]

J. Serrin and H. Zou, CauchyLiouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta. Math., 189 (2002), 79-142. doi: 10.1007/BF02392645.

[22]

L. Veron, Local and Global Aspects of Quasilinear Degenerate Elliptic Equations, Quasilinear elliptic singular problems. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. doi: 10.1142/9850.

show all references

References:
[1]

S. AlarconJ. Garcia-Melian and A. Quaas, Liouville type theorems for elliptic equations with gradient terms, Milan J. Math., 81 (2013), 171-185. doi: 10.1007/s00032-013-0197-z.

[2]

S. AlarconJ. Garcia-Melian and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems, J. Math. Pures Appl., 99 (2013), 618-634. doi: 10.1016/j.matpur.2012.10.001.

[3]

S. AlarconJ. Garcia-Melian and A. Quaas, Existence and non-existence of solutions to elliptic equations with a general convection term, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 225-239. doi: 10.1017/S030821051200100X.

[4]

S. AlarconJ. Garcia-Melian and A. Quaas, Keller-Osserman type conditions for some elliptic problems with gradient terms, J. Differential Equations, 252 (2012), 886-914. doi: 10.1016/j.jde.2011.09.033.

[5]

D. ArcoyaC. De CosterL. Jeanjean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal., 268 (2015), 2298-2335. doi: 10.1016/j.jfa.2015.01.014.

[6]

S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Part. Diff. Eqns., 36 (2011), 2011-2047. doi: 10.1080/03605302.2010.534523.

[7]

S. N. Armstrong and B. Sirakov, Liouville results for fully nonlinear elliptic equations with power growth nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10 (2011), 711–728, arXiv: 1001.4489. [math.AP].

[8]

H. BerestyckiF. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems Ⅰ. Periodic framework, J. Europ. Math. Soc., 7 (2005), 173-213. doi: 10.4171/JEMS/26.

[9]

H. Berestycki, F. Hamel and L. Rossi, Liouville type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl., (4) 186 (2007), 469–507. doi: 10.1007/s10231-006-0015-0.

[10]

M. F. Bidaut-Veron, M. Garcia-Huidobro and L. Veron, Estimates of solutions of elliptic equations with a source reaction term involving the product of the function and its gradient, available at https://arXiv.org/pdf/1711.11489.pdf

[11]

M. F. Bidaut-Veron, Local and global behavior of solutions of quasilinear equations of EmdenFowler type, Arch. Rat. Mech. Anal., 107 (1989), 293-324. doi: 10.1007/BF00251552.

[12]

M. F. Bidaut-VeronM. Garcia-Huidobro and L. Veron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Calc. Var. Part. Diff. Equ., 54 (2015), 3471-3515. doi: 10.1007/s00526-015-0911-5.

[13]

I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse, 13 (2004), 261-287. doi: 10.5802/afst.1070.

[14]

M. A. Burgos-PerezJ. Garcia Melian and A. Quaas, Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems, Discrete Contin. Dyn. Syst., 36 (2016), 4703-4721. doi: 10.3934/dcds.2016004.

[15]

G. Caristi and E. Mitidieri, Nonexistence of positive solutions of quasilinear equations, Adv. Diff. Equ., 2 (1997), 317-359.

[16]

H. Chen and P. Felmer, On Liouville type theorems for fully nonlinear elliptic equations with gradient term, J. Differential Equations, 255 (2013), 2167-2195. doi: 10.1016/j.jde.2013.06.009.

[17]

P. FelmerA. Quaas and B. Sirakov, Solvability of nonlinear elliptic equations with gradient terms, J. Diff. Eq., 254 (2013), 4327-4346. doi: 10.1016/j.jde.2013.03.003.

[18]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916. doi: 10.1016/j.na.2008.12.018.

[19]

L. Jeanjean and B. Sirakov, Existence and multiplicity for elliptic problems with quadratic growth in the gradient, Comm. Part. Diff. Eq., 38 (2013), 244-264. doi: 10.1080/03605302.2012.738754.

[20]

L. Rossi, Non-existence of positive solutions of fully nonlinear elliptic bounded domains, Commun. Pure Appl. Anal., 7 (2008), 125-141. doi: 10.3934/cpaa.2008.7.125.

[21]

J. Serrin and H. Zou, CauchyLiouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta. Math., 189 (2002), 79-142. doi: 10.1007/BF02392645.

[22]

L. Veron, Local and Global Aspects of Quasilinear Degenerate Elliptic Equations, Quasilinear elliptic singular problems. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. doi: 10.1142/9850.

[1]

M. Á. Burgos-Pérez, J. García-Melián, A. Quaas. Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4703-4721. doi: 10.3934/dcds.2016004

[2]

SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026

[3]

Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869

[4]

Pavol Quittner, Philippe Souplet. Parabolic Liouville-type theorems via their elliptic counterparts. Conference Publications, 2011, 2011 (Special) : 1206-1213. doi: 10.3934/proc.2011.2011.1206

[5]

Linfen Cao, Wenxiong Chen. Liouville type theorems for poly-harmonic Navier problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3937-3955. doi: 10.3934/dcds.2013.33.3937

[6]

Philippe Souplet. Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices. Networks & Heterogeneous Media, 2012, 7 (4) : 967-988. doi: 10.3934/nhm.2012.7.967

[7]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[8]

Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377

[9]

Quoc Hung Phan. Optimal Liouville-type theorems for a parabolic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 399-409. doi: 10.3934/dcds.2015.35.399

[10]

Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017

[11]

Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719

[12]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[13]

Yutian Lei, Congming Li. Sharp criteria of Liouville type for some nonlinear systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3277-3315. doi: 10.3934/dcds.2016.36.3277

[14]

Chin-Chin Wu, Zhengce Zhang. Dead-core rates for the heat equation with a spatially dependent strong absorption. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2203-2210. doi: 10.3934/dcdsb.2013.18.2203

[15]

Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761

[16]

Chunlai Mu, Jun Zhou, Yuhuan Li. Fast rate of dead core for fast diffusion equation with strong absorption. Communications on Pure & Applied Analysis, 2010, 9 (2) : 397-411. doi: 10.3934/cpaa.2010.9.397

[17]

Zhijun Zhang. Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1381-1392. doi: 10.3934/cpaa.2013.12.1381

[18]

Daniela Giachetti, Francesco Petitta, Sergio Segura de León. Elliptic equations having a singular quadratic gradient term and a changing sign datum. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1875-1895. doi: 10.3934/cpaa.2012.11.1875

[19]

Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507

[20]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (42)
  • HTML views (78)
  • Cited by (0)

Other articles
by authors

[Back to Top]