May 2019, 39(5): 2511-2553. doi: 10.3934/dcds.2019106

Non-uniformly expanding dynamical systems: Multi-dimension

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

Received  February 2018 Revised  August 2018 Published  January 2019

Dynamical systems on the interval $ [0, 1] $, satisfying the Thaler's condition, have been extensively studied. In this paper we consider invariant density and statistical properties of non-uniformly expanding dynamical systems on $ {\Bbb{R}}^d $ ($ d \geq 1 $). We present a critical regular condition that is a supplement and a development of the Thaler's condition, and it is very closely related to Lamperti's criterion. Under this new condition, we offer a method for studying the dynamical systems. A continuity description of the invariant density is presented; and a convergence theorem for iterations of Perron-Frobenius operator is set up. Furthermore, we establish a more exact result for one-dimensional systems.

Citation: Yuan-Ling Ye. Non-uniformly expanding dynamical systems: Multi-dimension. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2511-2553. doi: 10.3934/dcds.2019106
References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical surveys and monographs, Vol. 50, Amer. Math. Soc. 1997. doi: 10.1090/surv/050.

[2]

V. Baladi, Positive Transfer Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, Vol. 16, World Scientific, Singapore, 2000. doi: 10.1142/9789812813633.

[3]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math., Vol. 470, Springer, Berlin, 1975.

[4]

R. Bowen, Invariant measures for Markov maps of the interval, Commun. Math. Phys., 69 (1979), 1-17. doi: 10.1007/BF01941319.

[5]

N. Dunford and J. T. Schwartz, Linear Operators. Part I, Wily-Interscience, New York, 1958.

[6]

S. Gouëzel, Decay of correlations for nonuniformly expanding systems, Bull. Soc. math. France, 134 (2006), 1-31. doi: 10.24033/bsmf.2500.

[7]

S. Gouézel, Correlation asymptotics from large deviations in dynamical systems with infinite measure, Colloq. Math., 125 (2011), 193-212. doi: 10.4064/cm125-2-5.

[8]

M. Holland, Slowly mixing systems and intermittency maps, Ergod. Th. and Dynam. Sys., 25 (2005), 133-159. doi: 10.1017/S0143385704000343.

[9]

H. Y. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergod. Th. and Dynam. Sys., 24 (2004), 495-524. doi: 10.1017/S0143385703000671.

[10]

H. Y. Hu, Conditions for the existence of SBR measures of "almost Anosov'' diffeomorphisms, Trans. Amer. Math. Soc., 352 (2000), 2331-2367.

[11]

H. Y. Hu and S. Vaienti, Absolutely continuous invariant measures for some non-uniformly expanding maps, Ergod. Th. and Dynam. Sys., 29 (2009), 1185-1215. doi: 10.1017/S0143385708000576.

[12]

H. Y. Hu and L. S. Young, Nonexistence of SBR measures for some diffeomorphisms that are "almost Anosov", Ergod. Th. and Dynam. Sys., 15 (1995), 67-76. doi: 10.1017/S0143385700008245.

[13]

S. Ito and M. Yuri, Number theoretical transformations with finite range structure and their ergodic properties, Tokyo J. Math., 10 (1987), 1-32. doi: 10.3836/tjm/1270141789.

[14]

J. Lamperti, An occupation time theorem for a class of stochastic processes, Trans. Amer. Math. Soc., 88 (1958), 380-387. doi: 10.1090/S0002-9947-1958-0094863-X.

[15]

A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic aspects of dynamics, Applied Math. Sci., 97 (2nd ed.), Springer, New York, 1994. doi: 10.1007/978-1-4612-4286-4.

[16]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488. doi: 10.1090/S0002-9947-1973-0335758-1.

[17]

K. S. Lau and Y. L. Ye, Ruelle operator with nonexpansive IFS, Studia Math., 148 (2001), 143-169. doi: 10.4064/sm148-2-4.

[18]

C. LiveraniB. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergod. Th. and Dynam. Sys., 19 (1999), 671-685. doi: 10.1017/S0143385799133856.

[19]

I. Melbourne and D. Terhesiu, Operator renewal theory and mixing rates for dynamical systems with infinite measure, Invent. Math., 189 (2012), 61-110. doi: 10.1007/s00222-011-0361-4.

[20]

I. Melbourne and D. Terhesiu, Decay of correlations for non-uniformly expanding systems with general return times, Ergod. Th. and Dynam. Sys., 34 (2014), 893-918. doi: 10.1017/etds.2012.158.

[21]

M. Pollicott and M. Yuri, Statistical properties of maps with indifferent periodic points, Comm. Math. Phys., 217 (2001), 503-520. doi: 10.1007/s002200100368.

[22]

T. Prellberg and J. Slawny, Maps of intervals with indifferent fixed points: Thermodynamic formalism and phase transition, J. Statist. Phys., 66 (1992), 503-514. doi: 10.1007/BF01060077.

[23]

O. Sarig, Subexponential decay of correlations, Invent. Math., 150 (2002), 629-653. doi: 10.1007/s00222-002-0248-5.

[24]

F. Schweiger, Some remarks on ergodicity and invariant measures, Michigan Math. J., 22 (1975), 308-318. doi: 10.1307/mmj/1029001477.

[25]

M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314. doi: 10.1007/BF02788928.

[26]

M. Thaler, Transformations on $[0, 1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96. doi: 10.1007/BF02760623.

[27]

M. Thaler, A limit theorem for the Perron-Frobenius operator of transformations on $[0, 1]$ with indifferent fixed points, Israel J. Math., 91 (1995), 111-127. doi: 10.1007/BF02761642.

[28]

M. Thaler, Asymptotic distributions and large deviations for iterated maps with an indifferent fixed point, Stochastics and Dynamics, 5 (2005), 425-440. doi: 10.1142/S0219493705001535.

[29]

Y. L. Ye, Multifractal analysis of non-uniformly contracting iterated function systems, Nonlinearity, 30 (2017), 1708-1733. doi: 10.1088/1361-6544/aa639e.

[30]

Y. L. Ye, Ruelle operator with weakly contractive iterated function systems, Ergod. Th. and Dynam. Sys., 33 (2013), 1265-1290. doi: 10.1017/S0143385712000211.

[31]

L. S. Young, Recurence times and rates of mixing, Israel J. Math., 110 (1999), 153-188. doi: 10.1007/BF02808180.

[32]

M. Yuri, Multi-dimensional maps with infinite invariant measures and countable state sofic shifts, Indag. Math. (N. S.), 6 (1995), 355-383. doi: 10.1016/0019-3577(95)93202-L.

[33]

M. Yuri, On the speed of convergence to equilibrium states for multi-dimensional maps with indifferent periodic points, Nonlinearity, 15 (2002), 429-445. doi: 10.1088/0951-7715/15/2/311.

[34]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. Ⅰ. Fixed-Point Theorems, Translated from the German by Peter R. Wadsack. Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.

[35]

R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergod. Th. and Dynam. Sys., 20 (2000), 1519-1549. doi: 10.1017/S0143385700000821.

show all references

References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical surveys and monographs, Vol. 50, Amer. Math. Soc. 1997. doi: 10.1090/surv/050.

[2]

V. Baladi, Positive Transfer Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, Vol. 16, World Scientific, Singapore, 2000. doi: 10.1142/9789812813633.

[3]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math., Vol. 470, Springer, Berlin, 1975.

[4]

R. Bowen, Invariant measures for Markov maps of the interval, Commun. Math. Phys., 69 (1979), 1-17. doi: 10.1007/BF01941319.

[5]

N. Dunford and J. T. Schwartz, Linear Operators. Part I, Wily-Interscience, New York, 1958.

[6]

S. Gouëzel, Decay of correlations for nonuniformly expanding systems, Bull. Soc. math. France, 134 (2006), 1-31. doi: 10.24033/bsmf.2500.

[7]

S. Gouézel, Correlation asymptotics from large deviations in dynamical systems with infinite measure, Colloq. Math., 125 (2011), 193-212. doi: 10.4064/cm125-2-5.

[8]

M. Holland, Slowly mixing systems and intermittency maps, Ergod. Th. and Dynam. Sys., 25 (2005), 133-159. doi: 10.1017/S0143385704000343.

[9]

H. Y. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergod. Th. and Dynam. Sys., 24 (2004), 495-524. doi: 10.1017/S0143385703000671.

[10]

H. Y. Hu, Conditions for the existence of SBR measures of "almost Anosov'' diffeomorphisms, Trans. Amer. Math. Soc., 352 (2000), 2331-2367.

[11]

H. Y. Hu and S. Vaienti, Absolutely continuous invariant measures for some non-uniformly expanding maps, Ergod. Th. and Dynam. Sys., 29 (2009), 1185-1215. doi: 10.1017/S0143385708000576.

[12]

H. Y. Hu and L. S. Young, Nonexistence of SBR measures for some diffeomorphisms that are "almost Anosov", Ergod. Th. and Dynam. Sys., 15 (1995), 67-76. doi: 10.1017/S0143385700008245.

[13]

S. Ito and M. Yuri, Number theoretical transformations with finite range structure and their ergodic properties, Tokyo J. Math., 10 (1987), 1-32. doi: 10.3836/tjm/1270141789.

[14]

J. Lamperti, An occupation time theorem for a class of stochastic processes, Trans. Amer. Math. Soc., 88 (1958), 380-387. doi: 10.1090/S0002-9947-1958-0094863-X.

[15]

A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic aspects of dynamics, Applied Math. Sci., 97 (2nd ed.), Springer, New York, 1994. doi: 10.1007/978-1-4612-4286-4.

[16]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488. doi: 10.1090/S0002-9947-1973-0335758-1.

[17]

K. S. Lau and Y. L. Ye, Ruelle operator with nonexpansive IFS, Studia Math., 148 (2001), 143-169. doi: 10.4064/sm148-2-4.

[18]

C. LiveraniB. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergod. Th. and Dynam. Sys., 19 (1999), 671-685. doi: 10.1017/S0143385799133856.

[19]

I. Melbourne and D. Terhesiu, Operator renewal theory and mixing rates for dynamical systems with infinite measure, Invent. Math., 189 (2012), 61-110. doi: 10.1007/s00222-011-0361-4.

[20]

I. Melbourne and D. Terhesiu, Decay of correlations for non-uniformly expanding systems with general return times, Ergod. Th. and Dynam. Sys., 34 (2014), 893-918. doi: 10.1017/etds.2012.158.

[21]

M. Pollicott and M. Yuri, Statistical properties of maps with indifferent periodic points, Comm. Math. Phys., 217 (2001), 503-520. doi: 10.1007/s002200100368.

[22]

T. Prellberg and J. Slawny, Maps of intervals with indifferent fixed points: Thermodynamic formalism and phase transition, J. Statist. Phys., 66 (1992), 503-514. doi: 10.1007/BF01060077.

[23]

O. Sarig, Subexponential decay of correlations, Invent. Math., 150 (2002), 629-653. doi: 10.1007/s00222-002-0248-5.

[24]

F. Schweiger, Some remarks on ergodicity and invariant measures, Michigan Math. J., 22 (1975), 308-318. doi: 10.1307/mmj/1029001477.

[25]

M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314. doi: 10.1007/BF02788928.

[26]

M. Thaler, Transformations on $[0, 1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96. doi: 10.1007/BF02760623.

[27]

M. Thaler, A limit theorem for the Perron-Frobenius operator of transformations on $[0, 1]$ with indifferent fixed points, Israel J. Math., 91 (1995), 111-127. doi: 10.1007/BF02761642.

[28]

M. Thaler, Asymptotic distributions and large deviations for iterated maps with an indifferent fixed point, Stochastics and Dynamics, 5 (2005), 425-440. doi: 10.1142/S0219493705001535.

[29]

Y. L. Ye, Multifractal analysis of non-uniformly contracting iterated function systems, Nonlinearity, 30 (2017), 1708-1733. doi: 10.1088/1361-6544/aa639e.

[30]

Y. L. Ye, Ruelle operator with weakly contractive iterated function systems, Ergod. Th. and Dynam. Sys., 33 (2013), 1265-1290. doi: 10.1017/S0143385712000211.

[31]

L. S. Young, Recurence times and rates of mixing, Israel J. Math., 110 (1999), 153-188. doi: 10.1007/BF02808180.

[32]

M. Yuri, Multi-dimensional maps with infinite invariant measures and countable state sofic shifts, Indag. Math. (N. S.), 6 (1995), 355-383. doi: 10.1016/0019-3577(95)93202-L.

[33]

M. Yuri, On the speed of convergence to equilibrium states for multi-dimensional maps with indifferent periodic points, Nonlinearity, 15 (2002), 429-445. doi: 10.1088/0951-7715/15/2/311.

[34]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. Ⅰ. Fixed-Point Theorems, Translated from the German by Peter R. Wadsack. Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.

[35]

R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergod. Th. and Dynam. Sys., 20 (2000), 1519-1549. doi: 10.1017/S0143385700000821.

[1]

Yunping Jiang, Yuan-Ling Ye. Convergence speed of a Ruelle operator associated with a non-uniformly expanding conformal dynamical system and a Dini potential. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4693-4713. doi: 10.3934/dcds.2018206

[2]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[3]

Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457

[4]

Rua Murray. Ulam's method for some non-uniformly expanding maps. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1007-1018. doi: 10.3934/dcds.2010.26.1007

[5]

José F. Alves. Non-uniformly expanding dynamics: Stability from a probabilistic viewpoint. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 363-375. doi: 10.3934/dcds.2001.7.363

[6]

Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015

[7]

Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235

[8]

José F. Alves. A survey of recent results on some statistical features of non-uniformly expanding maps. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 1-20. doi: 10.3934/dcds.2006.15.1

[9]

Jose F. Alves; Stefano Luzzatto and Vilton Pinheiro. Markov structures for non-uniformly expanding maps on compact manifolds in arbitrary dimension. Electronic Research Announcements, 2003, 9: 26-31.

[10]

Xiaocai Wang, Junxiang Xu. Gevrey-smoothness of invariant tori for analytic reversible systems under Rüssmann's non-degeneracy condition. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 701-718. doi: 10.3934/dcds.2009.25.701

[11]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[12]

Nicolai T. A. Haydn, Kasia Wasilewska. Limiting distribution and error terms for the number of visits to balls in non-uniformly hyperbolic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2585-2611. doi: 10.3934/dcds.2016.36.2585

[13]

F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures. A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements, 2007, 14: 74-81. doi: 10.3934/era.2007.14.74

[14]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

[15]

Rua Murray. Approximation error for invariant density calculations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 535-557. doi: 10.3934/dcds.1998.4.535

[16]

Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211

[17]

Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35

[18]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[19]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[20]

Boris Kalinin, Victoria Sadovskaya. Lyapunov exponents of cocycles over non-uniformly hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5105-5118. doi: 10.3934/dcds.2018224

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (65)
  • HTML views (78)
  • Cited by (0)

Other articles
by authors

[Back to Top]