May 2019, 39(5): 2343-2359. doi: 10.3934/dcds.2019099

On density of infinite subsets I

Department of Mathematics, University of Maryland College Park, College Park, MD 20742, USA

Received  June 2017 Revised  July 2018 Published  January 2019

Fund Project: Research was partially supported by NSF grant DMS 1602409

Let
$ Y $
be a compact metric space,
$ G $
be a group acting by transformations on
$ Y $
. For any infinite subset
$ A\subset Y $
, we study the density of
$ gA $
for
$ g\in G $
and quantitative density of the set
$ {\bigcup\limits_{g\in G_n}gA} $
by the Hausdorff semimetric
$ d^H $
, for a family of increasing subsets
$ G_n\subset G $
. It is proven that for any integer
$ n\ge 2 $
,
$ \epsilon>0 $
, any infinite subset
$ A\subset \mathbb T^n $
, there is a
$ g\in SL(n,\mathbb Z) $
such that
$ gA $
is
$ \epsilon $
-dense. We also show that, for any infinite subset
$ A\subset [0,1] $
, for a.e. rotation and a.e. 3-IET,
$ \liminf\limits_nn\cdot d^H\left(\bigcup\limits_{k = 0}^{n-1}T^kA,[0,1]\right) = 0. $
Citation: Changguang Dong. On density of infinite subsets I. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2343-2359. doi: 10.3934/dcds.2019099
References:
[1]

N. Alon and Y. Peres, Uniform dilations, Geom. Funct. Anal., 2 (1992), 1-28. doi: 10.1007/BF01895704.

[2]

Y. Benoist and J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces (Ⅲ), Annals of Mathematics, 178 (2013), 1017-1059. doi: 10.4007/annals.2013.178.3.5.

[3]

D. Berend and Y. Peres, Asymptotically dense dilations of sets on the circle, J. London Math. Soc., (2) 47 (1993), 1-17. doi: 10.1112/jlms/s2-47.1.1.

[4]

J. BourgainA. FurmanE. Lindenstrauss and S. Mozes, Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus, Journal of the American Mathematical Society, 24 (2011), 231-280. doi: 10.1090/S0894-0347-2010-00674-1.

[5]

J. BourgainE. LindenstraussPh. Michel and A. Venkatesh, Some effective results for ×a; ×b, Ergodic Theory and Dynamical Systems, 29 (2009), 1705-1722. doi: 10.1017/S0143385708000898.

[6]

C. Dong, On density of infinite subsets Ⅱ: Dynamics on homogeneous spaces, to appear in Proceedings of the AMS. doi: 10.1090/proc/14298.

[7]

R. J. Duffin and A. C. Schaeffer, Khintchine's problem in metric Diophantine approximation, Duke Math. J, 8 (1941), 243-255. doi: 10.1215/S0012-7094-41-00818-9.

[8]

S. Glasner, Almost periodic sets and measures on the torus, Israel J. Math., 32 (1979), 161-172. doi: 10.1007/BF02764912.

[9]

Y. Guivarc'h and A. N. Starkov, Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms, Ergodic Theory and Dynamical Systems, 24 (2004), 767-802. doi: 10.1017/S0143385703000440.

[10]

Peter Humphries, http://mathoverflow.net/a/261553/99556

[11]

B. KalininA. Katok and F. Rodriguez Hertz, Nonuniform measure rigidity, Annals of Mathematics, 174 (2011), 361-400. doi: 10.4007/annals.2011.174.1.10.

[12]

H. Kato, Continuum-wise expansive homeomorphisms, Can. J. Math., 45 (1993), 576-598. doi: 10.4153/CJM-1993-030-4.

[13]

A. Katok and A. M. Stepin, Approximation of ergodic dynamical systems by periodic transformations, Soviet Math. Dokl, 7 (1966), 1638-1641.

[14]

A. KatokS Katok and K. Schmidt, Rigidity of measurable structure for $\mathbb Z^d$ actions by automorphisms of a torus, Comm. Math. Helv., 77 (2002), 718-745. doi: 10.1007/PL00012439.

[15]

M. Kelly and T. Lê, Uniform dilations in higher dimensions, J. London Math. Soc., (2) 88 (2013), 925-940. doi: 10.1112/jlms/jdt054.

[16] A. I. Khintchine, Continued Fractions, University of Chicago Press, 1964.
[17]

R. Nair and S. Velani, Glasner sets and polynomials in primes, Proceedings of the American Mathematical Society, 126 (1998), 2835-2840. doi: 10.1090/S0002-9939-98-04396-2.

[18]

J. Rodriguez Hertz, There are no stable points for continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993), 576-598, https://arXiv.org/abs/math/0208102v3 doi: 10.4153/CJM-1993-030-4.

[19]

Z. Wang, Quantitative density under higher rank abelian algebraic toral actions, International Mathematics Research Notices, (2010), 3744-3821. doi: 10.1093/imrn/rnq222.

show all references

References:
[1]

N. Alon and Y. Peres, Uniform dilations, Geom. Funct. Anal., 2 (1992), 1-28. doi: 10.1007/BF01895704.

[2]

Y. Benoist and J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces (Ⅲ), Annals of Mathematics, 178 (2013), 1017-1059. doi: 10.4007/annals.2013.178.3.5.

[3]

D. Berend and Y. Peres, Asymptotically dense dilations of sets on the circle, J. London Math. Soc., (2) 47 (1993), 1-17. doi: 10.1112/jlms/s2-47.1.1.

[4]

J. BourgainA. FurmanE. Lindenstrauss and S. Mozes, Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus, Journal of the American Mathematical Society, 24 (2011), 231-280. doi: 10.1090/S0894-0347-2010-00674-1.

[5]

J. BourgainE. LindenstraussPh. Michel and A. Venkatesh, Some effective results for ×a; ×b, Ergodic Theory and Dynamical Systems, 29 (2009), 1705-1722. doi: 10.1017/S0143385708000898.

[6]

C. Dong, On density of infinite subsets Ⅱ: Dynamics on homogeneous spaces, to appear in Proceedings of the AMS. doi: 10.1090/proc/14298.

[7]

R. J. Duffin and A. C. Schaeffer, Khintchine's problem in metric Diophantine approximation, Duke Math. J, 8 (1941), 243-255. doi: 10.1215/S0012-7094-41-00818-9.

[8]

S. Glasner, Almost periodic sets and measures on the torus, Israel J. Math., 32 (1979), 161-172. doi: 10.1007/BF02764912.

[9]

Y. Guivarc'h and A. N. Starkov, Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms, Ergodic Theory and Dynamical Systems, 24 (2004), 767-802. doi: 10.1017/S0143385703000440.

[10]

Peter Humphries, http://mathoverflow.net/a/261553/99556

[11]

B. KalininA. Katok and F. Rodriguez Hertz, Nonuniform measure rigidity, Annals of Mathematics, 174 (2011), 361-400. doi: 10.4007/annals.2011.174.1.10.

[12]

H. Kato, Continuum-wise expansive homeomorphisms, Can. J. Math., 45 (1993), 576-598. doi: 10.4153/CJM-1993-030-4.

[13]

A. Katok and A. M. Stepin, Approximation of ergodic dynamical systems by periodic transformations, Soviet Math. Dokl, 7 (1966), 1638-1641.

[14]

A. KatokS Katok and K. Schmidt, Rigidity of measurable structure for $\mathbb Z^d$ actions by automorphisms of a torus, Comm. Math. Helv., 77 (2002), 718-745. doi: 10.1007/PL00012439.

[15]

M. Kelly and T. Lê, Uniform dilations in higher dimensions, J. London Math. Soc., (2) 88 (2013), 925-940. doi: 10.1112/jlms/jdt054.

[16] A. I. Khintchine, Continued Fractions, University of Chicago Press, 1964.
[17]

R. Nair and S. Velani, Glasner sets and polynomials in primes, Proceedings of the American Mathematical Society, 126 (1998), 2835-2840. doi: 10.1090/S0002-9939-98-04396-2.

[18]

J. Rodriguez Hertz, There are no stable points for continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993), 576-598, https://arXiv.org/abs/math/0208102v3 doi: 10.4153/CJM-1993-030-4.

[19]

Z. Wang, Quantitative density under higher rank abelian algebraic toral actions, International Mathematics Research Notices, (2010), 3744-3821. doi: 10.1093/imrn/rnq222.

[1]

Brandon Seward. Every action of a nonamenable group is the factor of a small action. Journal of Modern Dynamics, 2014, 8 (2) : 251-270. doi: 10.3934/jmd.2014.8.251

[2]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[3]

Christopher F. Novak. Discontinuity-growth of interval-exchange maps. Journal of Modern Dynamics, 2009, 3 (3) : 379-405. doi: 10.3934/jmd.2009.3.379

[4]

Luca Marchese. The Khinchin Theorem for interval-exchange transformations. Journal of Modern Dynamics, 2011, 5 (1) : 123-183. doi: 10.3934/jmd.2011.5.123

[5]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[6]

S. A. Krat. On pairs of metrics invariant under a cocompact action of a group. Electronic Research Announcements, 2001, 7: 79-86.

[7]

Mohamed Baouch, Juan Antonio López-Ramos, Blas Torrecillas, Reto Schnyder. An active attack on a distributed Group Key Exchange system. Advances in Mathematics of Communications, 2017, 11 (4) : 715-717. doi: 10.3934/amc.2017052

[8]

Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289

[9]

Jon Chaika, David Damanik, Helge Krüger. Schrödinger operators defined by interval-exchange transformations. Journal of Modern Dynamics, 2009, 3 (2) : 253-270. doi: 10.3934/jmd.2009.3.253

[10]

Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53

[11]

Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35

[12]

Carlos Matheus, Jean-Christophe Yoccoz. The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis. Journal of Modern Dynamics, 2010, 4 (3) : 453-486. doi: 10.3934/jmd.2010.4.453

[13]

Xiaojun Huang, Yuan Lian, Changrong Zhu. A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 959-993. doi: 10.3934/dcds.2019040

[14]

Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271

[15]

Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139

[16]

Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215

[17]

Harish Garg, Kamal Kumar. Group decision making approach based on possibility degree measure under linguistic interval-valued intuitionistic fuzzy set environment. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-23. doi: 10.3934/jimo.2018162

[18]

Michael Hutchings. Mean action and the Calabi invariant. Journal of Modern Dynamics, 2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511

[19]

Shigeki Akiyama, Edmund Harriss. Pentagonal domain exchange. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4375-4400. doi: 10.3934/dcds.2013.33.4375

[20]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

2017 Impact Factor: 1.179

Article outline

[Back to Top]