February 2019, 39(2): 1071-1099. doi: 10.3934/dcds.2019045

Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. 

School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China

* Corresponding author: Mingxin Wang

Received  March 2018 Revised  August 2018 Published  November 2018

Fund Project: This work was supported by NSFC Grant 11771110

It is well known that the Leslie-Gower prey-predator model (without Allee effect) has a unique globally asymptotically stable positive equilibrium point, thus there is no Hopf bifurcation branching from positive equilibrium point. In this paper we study the Leslie-Gower prey-predator model with strong Allee effect in prey, and perform a detailed Hopf bifurcation analysis to both the ODE and PDE models, and derive conditions for determining the steady-state bifurcation of PDE model. Moreover, by the center manifold theory and the normal form method, the direction and stability of Hopf bifurcation solutions are established. Finally, some numerical simulations are presented. Apparently, Allee effect changes the topology structure of the original Leslie-Gower model.

Citation: Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045
References:
[1]

W. C. Allee, Principles of Animal Ecology, Saunders, RI, 1949.

[2]

M. A. Aziz-Alaoui and M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Appl. Math. Lett., 16 (2003), 1069-1075. doi: 10.1016/S0893-9659(03)90096-6.

[3]

Y. L. CaiC. D. ZhaoW. M. Wang and J. F. Wang, Dynamics of a Leslie-Gower predator-prey model with additive Allee effect, Appl. Math. Lett., 39 (2015), 2092-2106. doi: 10.1016/j.apm.2014.09.038.

[4]

F. CourchampT. Clutton-Brock and B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405-410. doi: 10.1016/S0169-5347(99)01683-3.

[5]

R. H. CuiJ. P. Shi and B. Y. Wu, Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Diff. Equat., 256 (2014), 108-129. doi: 10.1016/j.jde.2013.08.015.

[6]

L. L. Du and M. X. Wang, Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model, J. Math. Anal. Appl., 366 (2010), 473-485. doi: 10.1016/j.jmaa.2010.02.002.

[7]

Y. H. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Diff. Equat., 203 (2004), 331-364. doi: 10.1016/j.jde.2004.05.010.

[8]

E. González-OlivaresJ. Mena-LorcaA. Rojas-Palma and J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Appl. Math. Model, 35 (2011), 366-381. doi: 10.1016/j.apm.2010.07.001.

[9]

B. Hassard, N. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.

[10]

A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 14 (2001), 697-699. doi: 10.1016/S0893-9659(01)80029-X.

[11]

P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213-245. doi: 10.1093/biomet/35.3-4.213.

[12]

P. H. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16-31. doi: 10.1093/biomet/45.1-2.16.

[13]

S. B. LiJ. H. Wu and H. Nie, Steady-state bifurcation and Hopf bifurcation for a diffusive Leslie-Gower predator-prey model, Comput. Math. Appl., 70 (2015), 3043-3056. doi: 10.1016/j.camwa.2015.10.017.

[14]

Y. Li, Hopf bifurcations in general systems of Brusselator type, Nonlinear Anal.: Real World Appl., 28 (2016), 32-47. doi: 10.1016/j.nonrwa.2015.09.004.

[15]

Y. Li and M. X. Wang, Stationary pattern of a diffusive prey-predator model with trophic intersections of three levels, Nonlinear Anal.: Real World Appl., 14 (2013), 1806-1816. doi: 10.1016/j.nonrwa.2012.11.012.

[16]

N. Min and X. M. Wang, Qualitative analysis for a diffusive predator-prey model with a transmissible disease in the prey population, Comput. Math. Appl., 72 (2016), 1670-1689. doi: 10.1016/j.camwa.2016.07.028.

[17]

N. Min and X. M. Wang, Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1721-1737. doi: 10.3934/dcdsb.2018073.

[18]

W. J. Ni and M. X. Wang, Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3409-3420. doi: 10.3934/dcdsb.2017172.

[19]

W. J. Ni and M. X. Wang, Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, J. Diff. Equat., 261 (2016), 4244-4272. doi: 10.1016/j.jde.2016.06.022.

[20]

W. M. Ni, Diffusion, cross-diffusion and their spike-layer steady states, Notices Amer. Math. Soc., 45 (1998), 9-18.

[21]

P. Y. H. Pang and M. X. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh, 133 (2003), 919-942. doi: 10.1017/S0308210500002742.

[22]

P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Diff. Equat., 200 (2004), 245-273. doi: 10.1016/j.jde.2004.01.004.

[23]

E. C. Pielou, Mathematical Ecology, John Wiley & Sons, New York, RI, 1977.

[24]

Y. W. Qi and Y. Zhu, Global stability of Lesile-type predator-prey model, Meth. Appl. Anal., 23 (2016), 259-268. doi: 10.4310/MAA.2016.v23.n3.a3.

[25]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14 (1999), 401-405. doi: 10.1016/S0169-5347(99)01684-5.

[26]

J. F. WangJ. P. Shi and J. J. W, Dynamics and pattern formation in a diffusive predator-prey systems with strong Allee effect in prey, J. Diff. Equat., 251 (2011), 1276-1304. doi: 10.1016/j.jde.2011.03.004.

[27]

J. F. WangJ. J. Wei and J. P. Shi, Global bifurcation analysis and pattern formation inhomogeneous diffusive predator-prey systems, J. Diff. Equat., 260 (2016), 3495-3523. doi: 10.1016/j.jde.2015.10.036.

[28]

M. X. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion, Physica D, 196 (2004), 172-192. doi: 10.1016/j.physd.2004.05.007.

[29]

M. X. Wang and Q. Y. Zhang, Dynamics for the diffusive Leslie-Gower model with double free boundaries, Discrete Cont. Dyn. Syst. A, 38 (2018), 2591-2607. doi: 10.3934/dcds.2018109.

[30]

Y. X. Wang and W. T. Li, Spatial patterns of the Holling-Tanner predator-prey model with nonlinear diffusion effects, Appl. Anal., 92 (2013), 2168-2181. doi: 10.1080/00036811.2012.724402.

[31]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Second edition. Texts in Applied Mathematics, 2. Springer-Verlag, New York, 2003.

[32]

F. Q. YiJ. J. Wei and J. P. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal.: Real World Appl., 9 (2008), 1038-1051. doi: 10.1016/j.nonrwa.2007.02.005.

[33]

F. Q. YiJ. J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Equat., 246 (2009), 1944-1977. doi: 10.1016/j.jde.2008.10.024.

show all references

References:
[1]

W. C. Allee, Principles of Animal Ecology, Saunders, RI, 1949.

[2]

M. A. Aziz-Alaoui and M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Appl. Math. Lett., 16 (2003), 1069-1075. doi: 10.1016/S0893-9659(03)90096-6.

[3]

Y. L. CaiC. D. ZhaoW. M. Wang and J. F. Wang, Dynamics of a Leslie-Gower predator-prey model with additive Allee effect, Appl. Math. Lett., 39 (2015), 2092-2106. doi: 10.1016/j.apm.2014.09.038.

[4]

F. CourchampT. Clutton-Brock and B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405-410. doi: 10.1016/S0169-5347(99)01683-3.

[5]

R. H. CuiJ. P. Shi and B. Y. Wu, Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Diff. Equat., 256 (2014), 108-129. doi: 10.1016/j.jde.2013.08.015.

[6]

L. L. Du and M. X. Wang, Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model, J. Math. Anal. Appl., 366 (2010), 473-485. doi: 10.1016/j.jmaa.2010.02.002.

[7]

Y. H. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Diff. Equat., 203 (2004), 331-364. doi: 10.1016/j.jde.2004.05.010.

[8]

E. González-OlivaresJ. Mena-LorcaA. Rojas-Palma and J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Appl. Math. Model, 35 (2011), 366-381. doi: 10.1016/j.apm.2010.07.001.

[9]

B. Hassard, N. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.

[10]

A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 14 (2001), 697-699. doi: 10.1016/S0893-9659(01)80029-X.

[11]

P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213-245. doi: 10.1093/biomet/35.3-4.213.

[12]

P. H. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16-31. doi: 10.1093/biomet/45.1-2.16.

[13]

S. B. LiJ. H. Wu and H. Nie, Steady-state bifurcation and Hopf bifurcation for a diffusive Leslie-Gower predator-prey model, Comput. Math. Appl., 70 (2015), 3043-3056. doi: 10.1016/j.camwa.2015.10.017.

[14]

Y. Li, Hopf bifurcations in general systems of Brusselator type, Nonlinear Anal.: Real World Appl., 28 (2016), 32-47. doi: 10.1016/j.nonrwa.2015.09.004.

[15]

Y. Li and M. X. Wang, Stationary pattern of a diffusive prey-predator model with trophic intersections of three levels, Nonlinear Anal.: Real World Appl., 14 (2013), 1806-1816. doi: 10.1016/j.nonrwa.2012.11.012.

[16]

N. Min and X. M. Wang, Qualitative analysis for a diffusive predator-prey model with a transmissible disease in the prey population, Comput. Math. Appl., 72 (2016), 1670-1689. doi: 10.1016/j.camwa.2016.07.028.

[17]

N. Min and X. M. Wang, Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1721-1737. doi: 10.3934/dcdsb.2018073.

[18]

W. J. Ni and M. X. Wang, Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3409-3420. doi: 10.3934/dcdsb.2017172.

[19]

W. J. Ni and M. X. Wang, Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, J. Diff. Equat., 261 (2016), 4244-4272. doi: 10.1016/j.jde.2016.06.022.

[20]

W. M. Ni, Diffusion, cross-diffusion and their spike-layer steady states, Notices Amer. Math. Soc., 45 (1998), 9-18.

[21]

P. Y. H. Pang and M. X. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh, 133 (2003), 919-942. doi: 10.1017/S0308210500002742.

[22]

P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Diff. Equat., 200 (2004), 245-273. doi: 10.1016/j.jde.2004.01.004.

[23]

E. C. Pielou, Mathematical Ecology, John Wiley & Sons, New York, RI, 1977.

[24]

Y. W. Qi and Y. Zhu, Global stability of Lesile-type predator-prey model, Meth. Appl. Anal., 23 (2016), 259-268. doi: 10.4310/MAA.2016.v23.n3.a3.

[25]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14 (1999), 401-405. doi: 10.1016/S0169-5347(99)01684-5.

[26]

J. F. WangJ. P. Shi and J. J. W, Dynamics and pattern formation in a diffusive predator-prey systems with strong Allee effect in prey, J. Diff. Equat., 251 (2011), 1276-1304. doi: 10.1016/j.jde.2011.03.004.

[27]

J. F. WangJ. J. Wei and J. P. Shi, Global bifurcation analysis and pattern formation inhomogeneous diffusive predator-prey systems, J. Diff. Equat., 260 (2016), 3495-3523. doi: 10.1016/j.jde.2015.10.036.

[28]

M. X. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion, Physica D, 196 (2004), 172-192. doi: 10.1016/j.physd.2004.05.007.

[29]

M. X. Wang and Q. Y. Zhang, Dynamics for the diffusive Leslie-Gower model with double free boundaries, Discrete Cont. Dyn. Syst. A, 38 (2018), 2591-2607. doi: 10.3934/dcds.2018109.

[30]

Y. X. Wang and W. T. Li, Spatial patterns of the Holling-Tanner predator-prey model with nonlinear diffusion effects, Appl. Anal., 92 (2013), 2168-2181. doi: 10.1080/00036811.2012.724402.

[31]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Second edition. Texts in Applied Mathematics, 2. Springer-Verlag, New York, 2003.

[32]

F. Q. YiJ. J. Wei and J. P. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal.: Real World Appl., 9 (2008), 1038-1051. doi: 10.1016/j.nonrwa.2007.02.005.

[33]

F. Q. YiJ. J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Equat., 246 (2009), 1944-1977. doi: 10.1016/j.jde.2008.10.024.

Figure 1.  Graphs of $y = [d_1\mu-d_2A(\lambda ^{(1)})]^2$ and $y = 4d_1d_2[\beta\lambda ^{(1)}-A(\lambda ^{(1)})]\mu.$
Figure 2.  $p_+(\mu)$ is decreasing and $p_{-}(\mu)$ is increasing in $(0, \mu_*]$
Figure 3.  $p_+(\mu)$ is decreasing in $(0, \infty)$
Figure 4.  The system (3) occurs Hopf bifurcation from $(\lambda ^{(1)}, \lambda ^{(1)})$ when $\beta = 0.1714$
Figure 5.  Most of solutions to (3) converge to $(0, 0)$ when $\beta = 0.17157288$
Figure 6.  The system (3) has two positive equilibrium points $(\lambda ^{(1)}, \lambda ^{(1)})$ and $(\lambda ^{(2)}, \lambda ^{(2)})$. The former is stable and the later unstable
Figure 7.  Spatially homogeneous Hopf bifurcation of (4) when $\beta = 61.3170$ and $n = 0$
Figure 8.  Spatially non-homogeneous Hopf bifurcation of (4) when $\beta = 78.4754$ and $n = 2$
Table 1.  Hopf bifurcation values of ODE problem (3)
$0<\mu<b_0$ $b_0<\mu<b^0$ $\mu>b^0$
$0<b<b_1$
One Hopf bifurcation value $\lambda ^{(1)}_{0, +}$

Two Hopf bifurcation values $\lambda ^{(1)}_{0, -}$, $\lambda ^{(1)}_{0, +}$
Null
$b_1<b<1$
One Hopf bifurcation value $\lambda ^{(1)}_{0, +}$
Null Null
$b_1=7-4\sqrt 3$
$0<\mu<b_0$ $b_0<\mu<b^0$ $\mu>b^0$
$0<b<b_1$
One Hopf bifurcation value $\lambda ^{(1)}_{0, +}$

Two Hopf bifurcation values $\lambda ^{(1)}_{0, -}$, $\lambda ^{(1)}_{0, +}$
Null
$b_1<b<1$
One Hopf bifurcation value $\lambda ^{(1)}_{0, +}$
Null Null
$b_1=7-4\sqrt 3$
Table 2.  Hopf bifurcation values for $(\lambda ^{(1)}, \lambda ^{(1)})$ in PDE problem (4)
$d_1^{-1}d_2b^0<\mu<b_0$ $\max\{d_1^{-1}d_2b^0, b_0\}<\mu<b^0$ $\mu>b^0$
$0<b<b_1$
$2r-m+1$ Hopf bifurcation values

$2r+2$ Hopf bifurcation values
Null
$b_1<b<1$
$m+1$ Hopf bifurcation values
Null Null
$b_1=7-4\sqrt 3$, $h_j=\mu+(d_1+d_2)j^2/l^2$
$d_1^{-1}d_2b^0<\mu<b_0$ $\max\{d_1^{-1}d_2b^0, b_0\}<\mu<b^0$ $\mu>b^0$
$0<b<b_1$
$2r-m+1$ Hopf bifurcation values

$2r+2$ Hopf bifurcation values
Null
$b_1<b<1$
$m+1$ Hopf bifurcation values
Null Null
$b_1=7-4\sqrt 3$, $h_j=\mu+(d_1+d_2)j^2/l^2$
Table 3.  Hopf bifurcation values for $(\lambda ^{(2)}, \lambda ^{(2)})$ in PDE problem (4)
$0<\mu<1-b$ $1-b<\mu<b_0$ $b_0<\mu<b^0$
$0<b<b_1$
$m-k$ Hopf
bifurcation values

$m$ Hopf
bifurcation values
Null
$b_1<b<b_2$
$2r-m-k$ Hopf
bifurcation values

$2r-m$ Hopf
bifurcation values

$2r$ Hopf
bifurcation values
$b_1=7-4\sqrt 3$, $b_2=3-2\sqrt 2$, $h_j=\mu+(d_1+d_2)j^2/l^2$
$0<\mu<1-b$ $1-b<\mu<b_0$ $b_0<\mu<b^0$
$0<b<b_1$
$m-k$ Hopf
bifurcation values

$m$ Hopf
bifurcation values
Null
$b_1<b<b_2$
$2r-m-k$ Hopf
bifurcation values

$2r-m$ Hopf
bifurcation values

$2r$ Hopf
bifurcation values
$b_1=7-4\sqrt 3$, $b_2=3-2\sqrt 2$, $h_j=\mu+(d_1+d_2)j^2/l^2$
Table 4.  Hopf bifurcation values for $(\lambda ^{(2)}, \lambda ^{(2)})$ in PDE problem (4)
$0<\mu<b_0$ $b_0<\mu<1-b$ $1-b<\mu<b^0$
$b_2<b<\frac{1}{3}$
$2r-m-k$ Hopf
bifurcation values

$2r-k$ Hopf
bifurcation values

$2r$ Hopf
bifurcation values
$\frac{1}{3}<b<1$
$k-m$ Hopf
bifurcation values

$k$ Hopf
bifurcation values
Null
$b_2=3-2\sqrt 2$, $h_j=\mu+(d_1+d_2)j^2/l^2$
$0<\mu<b_0$ $b_0<\mu<1-b$ $1-b<\mu<b^0$
$b_2<b<\frac{1}{3}$
$2r-m-k$ Hopf
bifurcation values

$2r-k$ Hopf
bifurcation values

$2r$ Hopf
bifurcation values
$\frac{1}{3}<b<1$
$k-m$ Hopf
bifurcation values

$k$ Hopf
bifurcation values
Null
$b_2=3-2\sqrt 2$, $h_j=\mu+(d_1+d_2)j^2/l^2$
Table 5.  Parameters' values of Hopf bifurcation for $(\lambda ^{(2)}, \lambda ^{(2)})$
$b$ $\mu$ $\beta$ $d_1$ $d_2$ $l$
1 0.03 0.1 22.44329 1 0.1 1
2 0.05 0.1 11.46339 1 0.1 1
3 0.06 0.1 9.485507 1 0.1 1
4 0.06 0.1 6.305220 1 0.1 1
$b$ $\mu$ $\beta$ $d_1$ $d_2$ $l$
1 0.03 0.1 22.44329 1 0.1 1
2 0.05 0.1 11.46339 1 0.1 1
3 0.06 0.1 9.485507 1 0.1 1
4 0.06 0.1 6.305220 1 0.1 1
Table 6.  Parameters' values for steady-state bifurcation
$b$ $\mu$ $\beta$ $d_1$ $d_2$ $l$
1 0.25 0.292 0.972 0.5 3 0.531
2 0.062 2.431 8.667 0.5 2 1.283
3 0.25 1 0.667 1 1 1
4 0.062 1 10 1 1 2
$b$ $\mu$ $\beta$ $d_1$ $d_2$ $l$
1 0.25 0.292 0.972 0.5 3 0.531
2 0.062 2.431 8.667 0.5 2 1.283
3 0.25 1 0.667 1 1 1
4 0.062 1 10 1 1 2
[1]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[2]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[3]

Xiaofeng Xu, Junjie Wei. Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 765-783. doi: 10.3934/dcdsb.2018042

[4]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[5]

C. R. Zhu, K. Q. Lan. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 289-306. doi: 10.3934/dcdsb.2010.14.289

[6]

Jun Zhou. Qualitative analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1127-1145. doi: 10.3934/cpaa.2015.14.1127

[7]

Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228

[8]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[9]

Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations & Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115

[10]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[11]

Changrong Zhu, Lei Kong. Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1187-1206. doi: 10.3934/dcdss.2017065

[12]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

[13]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[14]

Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1721-1737. doi: 10.3934/dcdsb.2018073

[15]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[16]

Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks & Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011

[17]

Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173

[18]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[19]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[20]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (26)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]