February 2019, 39(2): 959-993. doi: 10.3934/dcds.2019040

A Billingsley-type theorem for the pressure of an action of an amenable group

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

* Corresponding author

Received  March 2018 Revised  August 2018 Published  November 2018

Fund Project: The research was supported by NSF of China (No. 11671057, No. 11471318, No. 11671058) and the Fundamental Research Funds for the Central Universities (No. 2018CDQYST0023)

This paper extends the definition of Bowen topological entropy of subsets to Pesin-Pitskel topological pressure for the continuous action of amenable groups on a compact metric space. We introduce the local measure theoretic pressure of subsets and investigate the relation between local measure theoretic pressure of Borel probability measures and Pesin-Pitskel topological pressure on an arbitrary subset of a compact metric space.

Citation: Xiaojun Huang, Yuan Lian, Changrong Zhu. A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 959-993. doi: 10.3934/dcds.2019040
References:
[1]

R. L. AdlerA. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319. doi: 10.2307/1994177.

[2]

P. Billingsley, Ergodic Theory and Information, John Wiley and Sons Inc., New York, 1965.

[3]

A. Bis, An analogue of the variational principle for group and pseudogroup actions, Ann. Inst. Fourier (Grenoble), 63 (2013), 839-863. doi: 10.5802/aif.2778.

[4]

R. Bowen, Equilibrium States and the Ergodic Theorey of Anosov Diffeomorphisms, Lecture Notes in Math., vol. 470, Springer-Verlag, 1975.

[5]

R. Bowen, Hausdorff dimension of quasicircles, Publ. Math. Inst. Hautes Etudes Sci., 50 (1979), 11-25.

[6]

M. Brin and A. Katok, On local entropy, Lecture Notes in Math., Springer, Berlin, 1007 (1983), 30–38. doi: 10.1007/BFb0061408.

[7]

C. Carathéodory, Über das lineare mass, Göttingen Nachr., (1914), 406-426.

[8]

D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254. doi: 10.1016/j.jfa.2012.07.010.

[9]

T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc., 3 (1971), 176-180. doi: 10.1112/blms/3.2.176.

[10]

L. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc., 23 (1969), 679-688. doi: 10.2307/2036610.

[11]

X. HuangJ. Liu and C. Zhu, The Bowen topological entropy of subsets for amenable group actions, Discrete Contin. Dyn. Syst., 38 (2018), 4467-4482. doi: 10.3934/dcds.2018195.

[12]

D. Kerr and H. Li, Ergodic Theory: Independence and Dichotomies, Springer, 2016. doi: 10.1007/978-3-319-49847-8.

[13]

A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, Dokl. Akad. Nauk SSSR, 119 (1958), 861-864.

[14]

H. Li, Sofic mean dimension, Adv. Math., 244 (2013), 570-604. doi: 10.1016/j.aim.2013.05.005.

[15]

B. Liang and K. Yan, Topological pressure for sub-additive potentials of amenable group actions, J. Funct. Anal., 262 (2012), 584-601. doi: 10.1016/j.jfa.2011.09.020.

[16]

J. Ma and Z. Wen, A Billingsley type theorem for Bowen entropy, C. R. Math. Acad. Sci., Paris, 346 (2008), 503–507. doi: 10.1016/j.crma.2008.03.010.

[17]

I. Namioka, Følner's conditions for amenable semi-groups, Math. Scand., 15 (1964), 18-28. doi: 10.7146/math.scand.a-10723.

[18]

D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48 (1987), 1-141. doi: 10.1007/BF02790325.

[19]

Y. B. Pesin, Dimension Theory in Dynamical Systems Contemporary Views and Applications, Chicago lecture in Mathematics. University of Chicago Press, Chicago, IL, 1997. doi: 10.7208/chicago/9780226662237.001.0001.

[20]

Y. Pesin and B. S. Pitskel, Topological pressure and the variational principle for noncompact sets, Functional Anal. Appl., 18 (1984), 50-63, 96.

[21]

D. Ruelle, Statistical mechanics on compact set with Zv action satisfying expansiveness and specification, Trans. Amer. Math. Soc., 187 (1973), 237-251. doi: 10.2307/1996437.

[22]

D. Ruelle, Thermodynamic Formalism, Vol.5 of Encyclopedia of Mathematics and its Applications. Reading, MA: Addision-Wesley, 1978.

[23]

X. TangW. Cheng and Y. Zhao, Variational principle for topological pressures on subsets, J. Math. Anal. Appl., 424 (2015), 1272-1285. doi: 10.1016/j.jmaa.2014.11.066.

[24]

P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975), 937-971. doi: 10.2307/2373682.

show all references

References:
[1]

R. L. AdlerA. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319. doi: 10.2307/1994177.

[2]

P. Billingsley, Ergodic Theory and Information, John Wiley and Sons Inc., New York, 1965.

[3]

A. Bis, An analogue of the variational principle for group and pseudogroup actions, Ann. Inst. Fourier (Grenoble), 63 (2013), 839-863. doi: 10.5802/aif.2778.

[4]

R. Bowen, Equilibrium States and the Ergodic Theorey of Anosov Diffeomorphisms, Lecture Notes in Math., vol. 470, Springer-Verlag, 1975.

[5]

R. Bowen, Hausdorff dimension of quasicircles, Publ. Math. Inst. Hautes Etudes Sci., 50 (1979), 11-25.

[6]

M. Brin and A. Katok, On local entropy, Lecture Notes in Math., Springer, Berlin, 1007 (1983), 30–38. doi: 10.1007/BFb0061408.

[7]

C. Carathéodory, Über das lineare mass, Göttingen Nachr., (1914), 406-426.

[8]

D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254. doi: 10.1016/j.jfa.2012.07.010.

[9]

T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc., 3 (1971), 176-180. doi: 10.1112/blms/3.2.176.

[10]

L. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc., 23 (1969), 679-688. doi: 10.2307/2036610.

[11]

X. HuangJ. Liu and C. Zhu, The Bowen topological entropy of subsets for amenable group actions, Discrete Contin. Dyn. Syst., 38 (2018), 4467-4482. doi: 10.3934/dcds.2018195.

[12]

D. Kerr and H. Li, Ergodic Theory: Independence and Dichotomies, Springer, 2016. doi: 10.1007/978-3-319-49847-8.

[13]

A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, Dokl. Akad. Nauk SSSR, 119 (1958), 861-864.

[14]

H. Li, Sofic mean dimension, Adv. Math., 244 (2013), 570-604. doi: 10.1016/j.aim.2013.05.005.

[15]

B. Liang and K. Yan, Topological pressure for sub-additive potentials of amenable group actions, J. Funct. Anal., 262 (2012), 584-601. doi: 10.1016/j.jfa.2011.09.020.

[16]

J. Ma and Z. Wen, A Billingsley type theorem for Bowen entropy, C. R. Math. Acad. Sci., Paris, 346 (2008), 503–507. doi: 10.1016/j.crma.2008.03.010.

[17]

I. Namioka, Følner's conditions for amenable semi-groups, Math. Scand., 15 (1964), 18-28. doi: 10.7146/math.scand.a-10723.

[18]

D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48 (1987), 1-141. doi: 10.1007/BF02790325.

[19]

Y. B. Pesin, Dimension Theory in Dynamical Systems Contemporary Views and Applications, Chicago lecture in Mathematics. University of Chicago Press, Chicago, IL, 1997. doi: 10.7208/chicago/9780226662237.001.0001.

[20]

Y. Pesin and B. S. Pitskel, Topological pressure and the variational principle for noncompact sets, Functional Anal. Appl., 18 (1984), 50-63, 96.

[21]

D. Ruelle, Statistical mechanics on compact set with Zv action satisfying expansiveness and specification, Trans. Amer. Math. Soc., 187 (1973), 237-251. doi: 10.2307/1996437.

[22]

D. Ruelle, Thermodynamic Formalism, Vol.5 of Encyclopedia of Mathematics and its Applications. Reading, MA: Addision-Wesley, 1978.

[23]

X. TangW. Cheng and Y. Zhao, Variational principle for topological pressures on subsets, J. Math. Anal. Appl., 424 (2015), 1272-1285. doi: 10.1016/j.jmaa.2014.11.066.

[24]

P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975), 937-971. doi: 10.2307/2373682.

[1]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[2]

Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018

[3]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[4]

Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068

[5]

Guohua Zhang. Variational principles of pressure. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409

[6]

Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417

[7]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[8]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[9]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[10]

Maria Pires De Carvalho. Persistence of Bowen-Ruelle-Sinai measures. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 213-221. doi: 10.3934/dcds.2007.17.213

[11]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[12]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[13]

M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure & Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805

[14]

Vishal Vasan, Katie Oliveras. Pressure beneath a traveling wave with constant vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3219-3239. doi: 10.3934/dcds.2014.34.3219

[15]

Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli. Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences & Engineering, 2005, 2 (3) : 445-460. doi: 10.3934/mbe.2005.2.445

[16]

Baojun Song, Melissa Castillo-Garsow, Karen R. Ríos-Soto, Marcin Mejran, Leilani Henso, Carlos Castillo-Chavez. Raves, clubs and ecstasy: the impact of peer pressure. Mathematical Biosciences & Engineering, 2006, 3 (1) : 249-266. doi: 10.3934/mbe.2006.3.249

[17]

De-Jun Feng, Antti Käenmäki. Equilibrium states of the pressure function for products of matrices. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 699-708. doi: 10.3934/dcds.2011.30.699

[18]

Kyungwoo Song, Yuxi Zheng. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1365-1380. doi: 10.3934/dcds.2009.24.1365

[19]

Hung-Chu Hsu. Recovering surface profiles of solitary waves on a uniform stream from pressure measurements. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3035-3043. doi: 10.3934/dcds.2014.34.3035

[20]

Giovanna Guidoboni, Alon Harris, Lucia Carichino, Yoel Arieli, Brent A. Siesky. Effect of intraocular pressure on the hemodynamics of the central retinal artery: A mathematical model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 523-546. doi: 10.3934/mbe.2014.11.523

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (16)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]