February 2019, 39(2): 803-817. doi: 10.3934/dcds.2019033

Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms

1. 

Department of Mathematics, University Ferhat Abbas Setif-1, Setif 19000, Algeria

2. 

Dipartimento di Ingegneria dell'Informazione, Ingegneria Elettrica e Matematica Applicata, Università degli Studi di Salerno, Via Giovanni Paolo Ⅱ, 132, 84084 Fisciano (SA), Italy

* Corresponding author: Abdelaziz Rhandi

Received  December 2017 Revised  June 2018 Published  November 2018

Fund Project: This work has been supported by the M.I.U.R. research project Prin 2015233N54 "Deterministic and Stochastic Evolution Equations". The second and the third authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

In this paper we prove that the heat kernel
$k$
associated to the operator
$A: = (1+|x|^\alpha)\Delta +b|x|^{\alpha-1}\frac{x}{|x|}\cdot\nabla -|x|^\beta$
satisfies
$\begin{eqnarray*}k(t,x,y) &\leq&c_1e^{\lambda_0 t+ c_2t^{-\gamma}}\left(\frac{1+|y|^\alpha}{1+|x|^\alpha}\right)^{\frac{b}{2\alpha}}\frac{(|x||y|)^{-\frac{N-1}{2}-\frac{1}{4}(\beta-\alpha)}}{1+|y|^\alpha}\\&&\times\exp\left(-\frac{\sqrt{2}}{\beta-\alpha+2}\left(|x|^{\frac{\beta-\alpha+2}{2}}+ |y|^{\frac{\beta-\alpha+2}{2}}\right)\right)\end{eqnarray*}$
for
$t>0,\,|x|,\,|y|\ge 1$
, where
$b\in\mathbb{R}$
,
$c_1,\,c_2$
are positive constants,
$\lambda_0$
is the largest eigenvalue of the operator
$A$
, and
$\gamma = \frac{\beta-\alpha+2}{\beta+\alpha-2}$
, in the case where
$N>2,\,\alpha>2$
and
$\beta>\alpha -2$
. The proof is based on the relationship between the log-Sobolev inequality and the ultracontractivity of a suitable semigroup in a weighted space.
Citation: Sallah Eddine Boutiah, Abdelaziz Rhandi, Cristian Tacelli. Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 803-817. doi: 10.3934/dcds.2019033
References:
[1]

D. BakryF. BolleyI. Gentil and P. Maheux, Weighted Nash inequalities, Rev. Mat. Iberoam., 28 (2012), 879-906. doi: 10.4171/RMI/695.

[2]

S. E. BoutiahF. GregorioA. Rhandi and C. Tacelli, Elliptic operators with unbounded diffusion, drift and potential terms, J. Differential Equations, 264 (2018), 2184-2204. doi: 10.1016/j.jde.2017.10.020.

[3]

A. CanaleA. Rhandi and C. Tacelli, Schrödinger-type operators with unbounded diffusion and potential terms, Annali Scuola Normale Superiore di Pisa Cl. Sci.(5), 16 (2016), 581-601.

[4]

A. CanaleA. Rhandi and C. Tacelli, Kernel estimates for Schrödinger type operators with unbounded diffusion and potential terms, Z. Anal. Anwend., 36 (2017), 377-392. doi: 10.4171/ZAA/1593.

[5]

A. Canale and C. Tacelli, Optimal kernel estimates for a Schrödinger type operator, Riv. Mat. Univ. Parma, 7 (2016), 341-450.

[6]

E. B. Davies, Heat kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989. doi: 10.1017/CBO9780511566158.

[7]

T. DuranteR. Manzo and C. Tacelli, Kernel estimates for Schrödinger type operators with unbounded coefficients and critical exponent, Ricerche Mat., 65 (2016), 289-305. doi: 10.1007/s11587-016-0284-x.

[8]

S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in $L^{p}$ and $C_{b}$-spaces, Discrete and Continuous Dynamical Systems A, 18 (2007), 747-772. doi: 10.3934/dcds.2007.18.747.

[9]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.

[10]

M. KunzeL. Lorenzi and A. Rhandi, Kernel estimates for nonautonomous Kolmogorov equations, Advances in Mathematics, 287 (2016), 600-639. doi: 10.1016/j.aim.2015.09.029.

[11]

L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups, Chapman & Hall/CRC, 2007.

[12]

L. Lorenzi and A. Rhandi, On Schrödinger type operators with unbounded coefficients: generation and heat kernel estimates, J. Evol. Equ., 15 (2015), 53-88. doi: 10.1007/s00028-014-0249-z.

[13]

G. MetafuneD. Pallara and M. Wacker, Feller Semigroups on $\mathbb{R}^{N}$, Semigroup Forum, 65 (2002), 159-205. doi: 10.1007/s002330010129.

[14]

G. Metafune and C. Spina, Elliptic operators with unbounded coefficients in $L^{p}$ spaces, Annali Scuola Normale Superiore di Pisa Cl. Sci.(5), 11 (2012), 303-340.

[15]

G. Metafune and C. Spina, Kernel estimates for some elliptic operators with unbounded coefficients, Discrete and Continuous Dynamical Systems A, 32 (2012), 2285-2299. doi: 10.3934/dcds.2012.32.2285.

[16]

G. MetafuneC. Spina and C. Tacelli, Elliptic operators with unbounded diffusion and drift coefficients in $L^{p}$ spaces, Adv. Diff. Equat., 19 (2014), 473-526.

[17]

G. MetafuneC. Spina and C. Tacelli, On a class of elliptic operators with unbounded diffusion coefficients, Evol. Equ. Control Theory, 3 (2014), 671-680. doi: 10.3934/eect.2014.3.671.

[18]

F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.

[19]

E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Math. Soc. Monogr. Ser., 31, Princeton Univ. Press, 2005.

show all references

References:
[1]

D. BakryF. BolleyI. Gentil and P. Maheux, Weighted Nash inequalities, Rev. Mat. Iberoam., 28 (2012), 879-906. doi: 10.4171/RMI/695.

[2]

S. E. BoutiahF. GregorioA. Rhandi and C. Tacelli, Elliptic operators with unbounded diffusion, drift and potential terms, J. Differential Equations, 264 (2018), 2184-2204. doi: 10.1016/j.jde.2017.10.020.

[3]

A. CanaleA. Rhandi and C. Tacelli, Schrödinger-type operators with unbounded diffusion and potential terms, Annali Scuola Normale Superiore di Pisa Cl. Sci.(5), 16 (2016), 581-601.

[4]

A. CanaleA. Rhandi and C. Tacelli, Kernel estimates for Schrödinger type operators with unbounded diffusion and potential terms, Z. Anal. Anwend., 36 (2017), 377-392. doi: 10.4171/ZAA/1593.

[5]

A. Canale and C. Tacelli, Optimal kernel estimates for a Schrödinger type operator, Riv. Mat. Univ. Parma, 7 (2016), 341-450.

[6]

E. B. Davies, Heat kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989. doi: 10.1017/CBO9780511566158.

[7]

T. DuranteR. Manzo and C. Tacelli, Kernel estimates for Schrödinger type operators with unbounded coefficients and critical exponent, Ricerche Mat., 65 (2016), 289-305. doi: 10.1007/s11587-016-0284-x.

[8]

S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in $L^{p}$ and $C_{b}$-spaces, Discrete and Continuous Dynamical Systems A, 18 (2007), 747-772. doi: 10.3934/dcds.2007.18.747.

[9]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.

[10]

M. KunzeL. Lorenzi and A. Rhandi, Kernel estimates for nonautonomous Kolmogorov equations, Advances in Mathematics, 287 (2016), 600-639. doi: 10.1016/j.aim.2015.09.029.

[11]

L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups, Chapman & Hall/CRC, 2007.

[12]

L. Lorenzi and A. Rhandi, On Schrödinger type operators with unbounded coefficients: generation and heat kernel estimates, J. Evol. Equ., 15 (2015), 53-88. doi: 10.1007/s00028-014-0249-z.

[13]

G. MetafuneD. Pallara and M. Wacker, Feller Semigroups on $\mathbb{R}^{N}$, Semigroup Forum, 65 (2002), 159-205. doi: 10.1007/s002330010129.

[14]

G. Metafune and C. Spina, Elliptic operators with unbounded coefficients in $L^{p}$ spaces, Annali Scuola Normale Superiore di Pisa Cl. Sci.(5), 11 (2012), 303-340.

[15]

G. Metafune and C. Spina, Kernel estimates for some elliptic operators with unbounded coefficients, Discrete and Continuous Dynamical Systems A, 32 (2012), 2285-2299. doi: 10.3934/dcds.2012.32.2285.

[16]

G. MetafuneC. Spina and C. Tacelli, Elliptic operators with unbounded diffusion and drift coefficients in $L^{p}$ spaces, Adv. Diff. Equat., 19 (2014), 473-526.

[17]

G. MetafuneC. Spina and C. Tacelli, On a class of elliptic operators with unbounded diffusion coefficients, Evol. Equ. Control Theory, 3 (2014), 671-680. doi: 10.3934/eect.2014.3.671.

[18]

F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.

[19]

E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Math. Soc. Monogr. Ser., 31, Princeton Univ. Press, 2005.

[1]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[2]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[3]

Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285

[4]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[5]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[6]

Xing-Bin Pan. An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 933-978. doi: 10.3934/dcds.2009.24.933

[7]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[8]

Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems & Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001

[9]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[10]

Nakao Hayashi, Tohru Ozawa. Schrödinger equations with nonlinearity of integral type. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 475-484. doi: 10.3934/dcds.1995.1.475

[11]

Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867

[12]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[13]

Cyril Joel Batkam, João R. Santos Júnior. Schrödinger-Kirchhoff-Poisson type systems. Communications on Pure & Applied Analysis, 2016, 15 (2) : 429-444. doi: 10.3934/cpaa.2016.15.429

[14]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[15]

M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473

[16]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[17]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[18]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure & Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[19]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[20]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure & Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (18)
  • HTML views (36)
  • Cited by (0)

[Back to Top]