December 2018, 38(12): 6215-6239. doi: 10.3934/dcds.2018267

Some questions looking for answers in dynamical systems

Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Catalonia, Spain

Dedicated to my friend, professor Rafael de la Llave Canosa, for his 60th birthday

Received  November 2017 Revised  July 2018 Published  September 2018

Dynamical systems appear in many models in all sciences and in technology. They can be either discrete or continuous, finite or infinite dimensional, deterministic or with random terms.

Many theoretical results, the related algorithms and implementations for careful simulations and a wide range of applications have been obtained up to now. But still many key questions remain open. They are mainly related either to global aspects of the dynamics or to the lack of a sufficiently good agreement between qualitative and quantitative results.

In these notes a sample of questions, for which the author is not aware of the existence of a good solution, are presented. Of course, it is easy to largely extend the list.

Citation: Carles Simó. Some questions looking for answers in dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6215-6239. doi: 10.3934/dcds.2018267
References:
[1]

G. Arioli and H. Koch, The critical renormalization fixed point for commuting pairs of area-preserving maps, Comm. Math. Phys., 295 (2010), 415-429. doi: 10.1007/s00220-009-0922-1.

[2]

V. Arnold, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40.

[3]

V. Arnold, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR, 156 (1964), 9-12.

[4]

V. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.

[5]

V. Arnold and A. Avez, Problèmes Ergodiques de la Mécanique Classique, Gauthier-Villars, Paris, 1967.

[6]

V. Arnold, V. Kozlov and A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics. Dynamical systems. III, 3$^{rd}$ edition, Encyclopedia of Mathematical Sciences, 3, Springer-Verlag, Berlin, 2006.

[7]

I. Baldomá and E. Fontich, Stable manifolds associated to fixed points with linear part equal to identity, J. Differential Equations, 197 (2004), 45-72. doi: 10.1016/j.jde.2003.07.005.

[8]

I. BaldomáE. FontichR. de la Llave and P. Martín, The parameterization method for one-dimensional invariant manifolds of higher dimensional parabolic points, Discrete Contin. Dyn. Syst. Ser. A, 17 (2007), 835-865. doi: 10.3934/dcds.2007.17.835.

[9]

I. BaldomáE. Fontich and P. Martín, Gevrey estimates for one-dimensional parabolic invariant manifolds of non-hyperbolic fixed points, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 4159-4190. doi: 10.3934/dcds.2017177.

[10]

I. Baldomá and À. Haro, One dimensional invariant manifolds of Gevrey type in real-analytic maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 295-322. doi: 10.3934/dcdsb.2008.10.295.

[11]

L. Biasco and L. Chierchia, On the measure of Lagrangian invariant tori in nearly-integrable mechanical system, Rend. Lincei Mat. Appl., 26 (2015), 423-432. doi: 10.4171/RLM/713.

[12]

K. Bjerklöv, SNA's in the quasiperiodic quadratic family, Comm. Math. Phys., 286 (2009), 137-161. doi: 10.1007/s00220-008-0626-y.

[13]

A. BounemouraB. Fayad and L. Niederman, Super exponential stability of quasiperiodic motion in Hamiltonian systems, Comm. Math. Phys., 350 (2017), 361-386. doi: 10.1007/s00220-016-2782-9.

[14]

H. Broer and C. Simó, Hill's equation with quasiperiodic forcing: Resonance tongues, instability pockets and global phenomena, Bul. Soc. Bras. Mat., 29 (1998), 253-293. doi: 10.1007/BF01237651.

[15]

H. BroerC. Simó and R. Vitolo, Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: analysis of a resonance "bubble", Physica D, 237 (2008), 1773-1799. doi: 10.1016/j.physd.2008.01.026.

[16]

H. BroerC. Simó and R. Vitolo, The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnold resonance web, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 769-787.

[17]

H. BroerC. Simó and R. Vitolo, Chaos and quasiperiodicity in diffeomorphisms of the solid torus, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871-905. doi: 10.3934/dcdsb.2010.14.871.

[18]

R. Calleja and R. de la Llave, A numerically accessible criterion for the breakdown of quasiperiodic solutions and its rigorous justification, Nonlinearity, 23 (2010), 2029-2058. doi: 10.1088/0951-7715/23/9/001.

[19]

R. Calleja and J-Ll. Figueras, Collision of invariant bundles of quasiperiodic attractors in the dissipative standard map, Chaos, 22 (2012), 033114, 10pp. doi: 10.1063/1.4737205.

[20]

M. Capiński and C. Simó, Computer assisted proof for normally hyperbolic invariant manifolds, Nonlinearity, 25 (2012), 1977-2026. doi: 10.1088/0951-7715/25/7/1997.

[21]

D. del-Castillo-NegreteJ. Greene and P. Morrison, Area preserving nontwist maps: Periodic orbits and transition to chaos, Physica D, 91 (1996), 1-23. doi: 10.1016/0167-2789(95)00257-X.

[22]

D. del-Castillo-NegreteJ. Greene and P. Morrison, Renormalization and transition to chaos in area preserving nontwist maps, Physica D, 100 (1997), 311-329. doi: 10.1016/S0167-2789(96)00200-X.

[23]

C. Cheng and Y. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom., 47 (1989/90), 275-292. doi: 10.1007/BF00053456.

[24]

C. Cheng and Y. Sun, Existence of periodically invariant curves in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom., 47 (1989/90), 293-303. doi: 10.1007/BF00053457.

[25]

B. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep., 52 (1979), 264-379. doi: 10.1016/0370-1573(79)90023-1.

[26]

A. DelshamsM. Gonchenko and P. Gutiérrez, Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tori with quadratic and cubic frequencies, Electronic Research Announcements in Math. Sci., 21 (2014), 41-61. doi: 10.3934/era.2014.21.41.

[27]

A. Delshams and P. Gutiérrez, Estimates on invariant tori near an elliptic equilibrium point of a Hamiltonian system, J. Differential Equations, 131 (1996), 277-303. doi: 10.1006/jdeq.1996.0165.

[28]

A. Delshams and R. de la Llave, KAM theory and a partial justification of Greene's criterion for non-twist maps, SIAM J. of Math. Anal., 31 (2000), 1235-1269. doi: 10.1137/S003614109834908X.

[29]

A. Delshams and R. Schaefer, Arnold diffusion for a complete family of perturbations, Regular and Chaotic Dynamics, 22 (2017), 78-108. doi: 10.1134/S1560354717010051.

[30]

A. Delshams and R. Schaefer, Arnold diffusion for a complete family of perturbations with two independent harmonics, Discrete Contin. Dyn. Syst. Ser. A, 38 (2018), 6047-6072.

[31]

H. Dullin and J. Meiss, Resonances and twist in volume-preserving maps, SIAM J. Appl. Dyn. Syst., 11 (2012), 319-349. doi: 10.1137/110846865.

[32]

F. DumortierS. IbáñezH. Kokubu and C. Simó, About the unfolding of a Hopf-zero singularity, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 4435-4471. doi: 10.3934/dcds.2013.33.4435.

[33]

C. Falcolini and R. de la Llave, A rigorous partial justification of Greene criterion, J. Statist. Phys., 67 (1992), 609-643. doi: 10.1007/BF01049722.

[34]

J.-L. Figueras and À. Haro, Different scenarios for hyperbolicity breakdown in quasiperiodic area preserving twist maps, Chaos, 25 (2015), 123119, 16pp. doi: 10.1063/1.4938185.

[35]

J.-L. Figueras and À. Haro, A note on the fractalization of saddle invariant curves in quasiperiodic systems, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1095-1107. doi: 10.3934/dcdss.2016043.

[36]

J-Ll. FiguerasÀ. Haro and A. Luque, Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193. doi: 10.1007/s10208-016-9339-3.

[37]

E. Fontich and C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices, Ergod. Th. and Dynam. Syst., 10 (1990), 319-346. doi: 10.1017/S0143385700005575.

[38]

E. Fontich and C. Simó, The splitting of separatrices for analytic diffeomorphisms, Ergod. Th. and Dynam. Syst., 10 (1990), 295-318. doi: 10.1017/S0143385700005563.

[39]

E. Fontich, C. Simó and A. Vieiro, Splitting of the separatrices after a Hamiltonian-Hopf bifurcation under periodic forcing, preprint, 2018.

[40]

E. Fontich, C. Simó and A. Vieiro, On the "hidden" harmonics associated to best approximants due to quasiperiodicity in splitting phenomena, preprint, 2018.

[41]

A. Fox and J. Meiss, Critical invariant circles in asymmetric and multiharmonic generalized standard maps, Comm. Nonlinear Sci. Numer. Simul., 19 (2014), 1004-1026. doi: 10.1016/j.cnsns.2013.07.028.

[42]

L. Garrido and C. Simó, Some ideas about strange attractors, in Proceed. Sitges Conference on Dynamical Systems and Chaos, Lect. Notes in Physics, 179, 1–28, Springer, 1983.

[43]

V. Gelfreich, A proof of the exponentially small transversality of the separatrices for the standard map, Comm. Math. Phys., 201 (1999), 155-216. doi: 10.1007/s002200050553.

[44]

V. GelfreichV. LazutkinC. Simó and M. Tabanov, Fern-like structures in the wild set of the standard and semistandard maps in $\mathbb{C}×\mathbb{C}$, Internat. J. of Bif. and Chaos, 2 (1992), 353-370. doi: 10.1142/S0218127492000343.

[45]

V. Gelfreich and C. Simó, High-precision computations of divergent asymptotic series and homoclinic phenomena, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 511-536. doi: 10.3934/dcdsb.2008.10.511.

[46]

A. GiorgilliA. DelshamsE. FontichL. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, J. Differential Equations, 77 (1989), 167-198. doi: 10.1016/0022-0396(89)90161-7.

[47]

S. GonchenkoI. OvsyannikovC. Simó and D. Turaev, Three-dimensional Hénon-like maps and wild Lorenz-like attractors, Internat. J. of Bif. and Chaos, 15 (2005), 3493-3508. doi: 10.1142/S0218127405014180.

[48]

A. González, À. Haro and R. de la Llave, Singularity theory for non-twist KAM tori, Mem. Amer. Math. Soc., 227 (2014), vi+115 pp.

[49]

A. González, À. Haro and R. de la Llave, Geometric and computational aspects of singularity theory for KAM tori, work in progress.

[50]

C. GrebogiE. OttS. Pelikan and J. Yorke, Strange attractors that are not chaotic, Physica D, 13 (1984), 261-268. doi: 10.1016/0167-2789(84)90282-3.

[51]

J. Greene, A method for determining stochastic transition, J. Math. Phys., 6 (1979), 1183-1201. doi: 10.2172/6191337.

[52]

M. GuardiaP. Martín and T. Martínez Seara, Oscillatory motions for the restricted planar circular three-body problem, Invent. math., 203 (2016), 417-492. doi: 10.1007/s00222-015-0591-y.

[53]

À. Haro, The Primitive Function of an Exact Symplectomorphism, Ph.D. thesis, Departament de Matemática Aplicada i Anàlisi, Universitat de Barcelona, 1998. doi: 10.1088/0951-7715/13/5/304.

[54]

À. Haro, M. Canadell, J-Ll. Figueras, A. Luque and J-M. Mondelo, The Parameterization Method for Invariant Manifolds. From Rigorous Results to Effective Computations, Applied Mathematical Sciences, 195, Springer, 2016. doi: 10.1007/978-3-319-29662-3.

[55]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasiperiodic maps: rigorous results, J. Differential Equations, 228 (2006), 530-579. doi: 10.1016/j.jde.2005.10.005.

[56]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasiperiodic maps: numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300. doi: 10.3934/dcdsb.2006.6.1261.

[57]

À. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown, Chaos, 16 (2006), 013120, 8pp. doi: 10.1063/1.2150947.

[58]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasiperiodic maps: explorations and mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst., 6 (2007), 142-207. doi: 10.1137/050637327.

[59]

À. Haro and J. Puig, Strange non-chaotic attractors in Harper maps, Chaos, 16 (2006), 033127, 7pp. doi: 10.1063/1.2259821.

[60]

J. Howard and S. Hohs, Stochasticity and reconnection in Hamiltonian systems, Physical Review A, 29 (1984), 418-421. doi: 10.1103/PhysRevA.29.418.

[61]

M. Irigoyen and C. Simó, Non-integrability of the $J_2$ problem, Celestial Mech. Dynam. Astronom., 55 (1993), 281-287. doi: 10.1007/BF00692515.

[62]

T. Jäger, The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations, Mem. Amer. Math. Soc., 201 (2009), vi+106 pp. doi: 10.1090/memo/0945.

[63]

T. Jäger, Strange non-chaotic attractors in quasiperiodically forced circle maps, Comm. Math. Phys., 289 (2009), 253-289. doi: 10.1007/s00220-009-0753-0.

[64]

À. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations, 98 (1992), 111-124. doi: 10.1016/0022-0396(92)90107-X.

[65]

À. Jorba and C. Simó, On quasiperiodic perturbations of elliptic equilibrium points, SIAM J. of Math. Anal., 27 (1996), 1704-1737. doi: 10.1137/S0036141094276913.

[66]

À. Jorba and J.-C. Tatjer, A mechanism for the fractalization of invariant curves in quasiperiodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567. doi: 10.3934/dcdsb.2008.10.537.

[67]

À. JorbaJ-C. TatjerC. Núñez and R. Obaya, Old and new results on strange non-chaotic attractors, Internat. J. of Bif. and Chaos, 17 (2007), 3895-3928. doi: 10.1142/S0218127407019780.

[68]

K. Kaneko, Fractalization of torus, Progr. Theoret. Phys., 71 (1984), 1112-1115. doi: 10.1143/PTP.71.1112.

[69]

G. Keller, A note on strange non-chaotic attractors, Fund. Math., 151 (1996), 139-148.

[70]

J. Ketoja and R. MacKay, Fractal boundary for the existence of invariant circles for area-preserving maps: Observations and renormalisation explanation, Physica D, 35 (1989), 318-334. doi: 10.1016/0167-2789(89)90073-0.

[71]

K. KhaninJ. Lopes-Dias and J. Marklof, Renormalization of multidimensional Hamiltonian flows, Nonlinearity, 19 (2006), 2727-2753. doi: 10.1088/0951-7715/19/12/001.

[72]

K. KhaninJ. Lopes-Dias and J. Marklof, Multidimensional continued fractions, dynamical renormalization and KAM theory, Comm. Math. Phys., 270 (2007), 197-231. doi: 10.1007/s00220-006-0125-y.

[73]

A. Khinchin, Continued Fractions, The University of Chicago Press, Chicago, Ill.- London, 1964.

[74]

H. Koch, A renormalization group fixed point associated with the breakup of golden invariant tori, Discrete Contin. Dyn. Syst. Ser. A, 11 (2004), 881-909. doi: 10.3934/dcds.2004.11.881.

[75]

A. Kolmogorov, On the conservation of conditionally periodic motions under small perturbation on the Hamiltonian, Dokl. Akad. Nauk SSSR, 98 (1954), 527-530.

[76]

E. Lacomba and C. Simó, Analysis of quadruple collision in some degenerate cases, Celestial Mech. Dynam. Astronom. 28 (1982), 49–62. doi: 10.1007/BF01230659.

[77]

E. Lacomba and C. Simó, Regularization of simultaneous binary collisions, J. Differential Equations 98 (1992), 241–259. doi: 10.1016/0022-0396(92)90092-2.

[78]

V. Lazutkin and C. Simó, Homoclinic orbits in the complex domain, Internat. J. of Bif. and Chaos, 7 (1997), 253-274. doi: 10.1142/S0218127497000182.

[79]

A. Litvak-Hinenzon and V. Rom-Kedar, Symmetry-breaking perturbations and strange attractors, Physical Review E, 55 (1997), 4964-4978. doi: 10.1103/PhysRevE.55.4964.

[80]

R. de la Llave, A tutorial on KAM theory, in Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69. 175–292. Amer. Math. Soc., Providence, RI, 2001. doi: 10.1090/pspum/069/1858536.

[81]

R. de la LlaveA. GonzálezÀ. Jorba and J. Villanueva, KAM theory without action-angle variables, Nonlinearity, 18 (2005), 855-895. doi: 10.1088/0951-7715/18/2/020.

[82]

R. de la Llave and A. Olvera, The obstruction criterion for non existence of invariant circles and renormalization, Nonlinearity, 19 (2006), 1907-1937. doi: 10.1088/0951-7715/19/8/008.

[83]

J. Llibre, R. Moeckel and Simó, Central Configurations, Periodic Orbits and Hamiltonian Systems, in Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser, 240 pp., 2015.

[84]

H. Lomelí and R. Calleja, Heteroclinic bifurcations and chaotic transport in the two-harmonic standard map, Chaos, 16 (2006), 023117, 8pp. doi: 10.1063/1.2179647.

[85]

R. MacKay, A renormalization approach to invariant circles in area-preserving maps, Physica D, 7 (1983), 283-300. doi: 10.1016/0167-2789(83)90131-8.

[86]

R. MacKay, Hyperbolic Cantori have dimension zero, J. Phys. A: Math. Gen., 20 (1987), L559-L561. doi: 10.1088/0305-4470/20/9/002.

[87]

R. MacKay, Greene's residue criterion, Nonlinearity, 5 (1992), 161-187. doi: 10.1088/0951-7715/5/1/007.

[88]

R. MacKay, Renormalization in Area-Preserving Maps, Advanced Series in Nonlinear Dynamics 6, World Scientific, 1993. doi: 10.1142/9789814354462.

[89]

R. MacKay and J. Stark, Locally most robust circles and boundary circles for area-preserving maps, Nonlinearity, 5 (1992), 867-888. doi: 10.1088/0951-7715/5/4/002.

[90]

R. Martínez and C. Simó, Simultaneous binary collisions in the planar four body problem, Nonlinearity, 12 (1999), 903-930. doi: 10.1088/0951-7715/12/4/310.

[91]

R. Martínez and C. Simó, The degree of differentiability of the regularization of simultaneous binary collisions in some $N$-body problems, Nonlinearity, 13 (2000), 2107-2130. doi: 10.1088/0951-7715/13/6/312.

[92]

R. Martínez and C. Simó, Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples, Regular and Chaotic Dynamics, 14 (2009), 323-348. doi: 10.1134/S1560354709030010.

[93]

R. Martínez and C. Simó, Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations, Discrete Contin. Dyn. Syst. Ser. A, 29 (2011), 1-24. doi: 10.3934/dcds.2011.29.1.

[94]

R. Martínez and C. Simó, The invariant manifolds at infinity of the restricted three-body problem and the boundaries of bounded motion, Regular and Chaotic Dynamics, 19 (2014), 745-765. doi: 10.1134/S1560354714060112.

[95]

R. Martínez and C. Simó, Return maps, dynamical consequences and applications, Qualitative Theory of Dynamical Systems, 14 (2015), 353-379. doi: 10.1007/s12346-015-0154-z.

[96]

R. Martínez, C. Simó and A. Susín, Regularizable and non-regularizable collisions in N-body problems, International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), World Sci. Publ., River Edge, NJ, (2000), 12–19.

[97]

J. Mather, Non existence of invariant circles, Ergod. Th. and Dynam. Syst., 4 (1984), 301-309. doi: 10.1017/S0143385700002455.

[98]

J. Mather, A criterion for the non existence of invariant circles, IHES Publ. Math., 63 (1986), 153-204.

[99]

R. McGehee, A stable manifold theorem for degenerate fixed points with applications to celestial mechanics, J. Differential Equations, 14 (1973), 70-88. doi: 10.1016/0022-0396(73)90077-6.

[100]

A. MedvedevA. Neishtadt and D. Treschev, Lagrangian tori near resonances of near-integrable Hamiltonian systems, Nonlinearity, 28 (2015), 2105-2130. doi: 10.1088/0951-7715/28/7/2105.

[101]

J. Meiss, N. Miguel, C. Simó and A. Vieiro, Stickiness, accelerator modes and anomalous diffusion due to a resonance bubble emerging from a Hopf-saddle-node bifurcation in 3D volume preserving maps, preprint, 2018.

[102]

N. MiguelC. Simó and A. Vieiro, From the Hénon conservative map to the Chirikov standard map for large parameter values, Regular and Chaotic Dynamics, 18 (2013), 469-489. doi: 10.1134/S1560354713050018.

[103]

J.-J. Morales, Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics 179, Birkhäuser, 1999. doi: 10.1007/978-3-0348-8718-2.

[104]

J.-J. Morales and J.-M. Peris, On a Galoisian approach to the splitting of separatrices, Ann. Fac. Sci. Toulouse Math., 8 (1999), 125-141. doi: 10.5802/afst.925.

[105]

J.-J. Morales and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems, Methods and Applications of Analysis, 8 (2001), 33-95. doi: 10.4310/MAA.2001.v8.n1.a3.

[106]

J.-J. Morales and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems Ⅱ, Methods and Applications of Analysis, 8 (2001), 97-111. doi: 10.4310/MAA.2001.v8.n1.a3.

[107]

J.-J. Morales and J.-P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential, Methods and Applications of Analysis, 8 (2001), 113-120. doi: 10.4310/MAA.2001.v8.n1.a5.

[108]

J.-J. MoralesJ.-P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Annales Sci. de l'ENS 4e série, 40 (2007), 845-884. doi: 10.1016/j.ansens.2007.09.002.

[109]

J.-J. Morales and C. Simó, Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Differential Equations, 129 (1996), 111-135. doi: 10.1006/jdeq.1996.0113.

[110]

A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys., 78 (1995), 1607-1617. doi: 10.1007/BF02180145.

[111]

P. Morrison, Magnetic field lines, Hamiltonian dynamics, and nontwist systems, Physics of Plasmas, 7 (2000), 2279-2289. doi: 10.1063/1.874062.

[112]

J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Gttingen Math.-Phys. Kl. II, 1962 (1962), 1-20.

[113]

J. Moser, Stable and Random Motions in Dynamical Systems, Annals of Mathematics Studies, Princeton Univ. Press, 1973.

[114]

A. Neishtadt, The separation of motions in systems with rapidly rotating phase, Prikladnaja Matematika i Mekhanika, 48 (1984), 133-139. doi: 10.1016/0021-8928(84)90078-9.

[115]

N. Nekhorosev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russian Mathematical Surveys, 32 (1977), 5-66.

[116]

A. Olvera and C. Simó, An obstruction method for the destruction of invariant curves, Physica D, 26 (1987), 181-192. doi: 10.1016/0167-2789(87)90222-3.

[117]

G. Piftankin and D. Treschev, Separatrix maps in Hamiltonian systems, Russian Mathematical Surveys, 62 (2007), 219-322. doi: 10.1070/RM2007v062n02ABEH004396.

[118]

J. Puig and C. Simó, Analytic families of reducible linear quasiperiodic differential equations, Ergod. Th. and Dynam. Syst., 26 (2006), 481-524. doi: 10.1017/S0143385705000362.

[119]

J. Puig and C. Simó, Resonance tongues and Spectral gaps in quasiperiodic Schrödinger operators with one or more frequencies. A numerical exploration, J. of Dynamics and Diff. Eq., 23 (2011), 649-669. doi: 10.1007/s10884-010-9199-5.

[120]

J. Puig and C. Simó, Resonance tongues in the quasiperiodic Hill-Schr¨odinger equation with three frequencies, Regular and Chaotic Dynamics, 16 (2011), 61-78. doi: 10.1134/S1560354710520047.

[121]

H. Rüssmann and I. Kleine Nenner, Über invariante kurven differenzierbarer abbildungen eines kreisringes, Nach. Akad. Wiss. Göttingen Math.-Phys.Kl. II, 1970 (1970), 67-105.

[122]

H. Rüssmann, On the existence of invariant curves of twist mappings of an annulus, Geometric Dynamics (Rio de Janeiro, 1981), 677–718, Lecture Notes in Math. 1007, Springer, 1983. doi: 10.1007/BFb0061441.

[123]

H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regular and Chaotic Chaotic Dynamics, 6 (2001), 119-204. doi: 10.1070/RD2001v006n02ABEH000169.

[124]

C. Simó, Estimates of the error in normal forms of Hamiltonian systems. Applications to effective stability. Examples, in Long-term Dynamical Behavior of Natural and Artificial N-body Systems, A.E. Roy, ed., 481–503, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 246, Kluwer Acad. Publ., Dordrecht, 1988.

[125]

C. Simó, Analytical and numerical computation of invariant manifolds, in Modern Methods in Celestial Mechanics, D. Benest and C. Froeschlé, editors, 285–330, Editions Frontières, 1990.

[126]

C. Simó, Measuring the lack of integrability in the J2 problem, in Predictability, Stability and Chaos in the N-body Dynamical Systems, A.E. Roy, editor, 305–309, NATO Adv. Sci. Inst. Ser. B Phys., 272, Plenum, New York, 1991.

[127]

C. Simó, Averaging under fast quasiperiodic forcing, Hamiltonian Mechanics, 13–34, NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum, New York, 1994.

[128]

C. Simó, Invariant curves of perturbations of non-twist integrable area preserving maps, Regular and Chaotic Dynamics, 3 (1998), 180-195. doi: 10.1070/rd1998v003n03ABEH000088.

[129]

C. Simó, Effective computations in celestial mechanics and astrodynamics, in Modern Methods of Analytical Mechanics and their Applications, V. V. Rumyantsev and A. V. Karapetyan, ed., CISM Courses and Lectures 387, 55–102, Springer, 1998.

[130]

C. Simó, Measuring the total amount of chaos in some Hamiltonian systems, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 5135-5164. doi: 10.3934/dcds.2014.34.5135.

[131]

C. Simó, Experiments looking for theoretical predictions, Indagationes Mathematicae, 27 (2016), 1069-1080. doi: 10.1016/j.indag.2015.11.013.

[132]

C. Simó, P. Sousa-Silva and M. Terra, Practical stability domains near L4, 5 in the restricted three-body problem: Some preliminary facts, in Progress and Challenges in Dynamical Systems, 54, 367–382, Springer, 2013. doi: 10.1007/978-3-642-38830-9_23.

[133]

C. Simó and T. Stuchi, Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem, Physica D, 140 (2000), 1-32. doi: 10.1016/S0167-2789(99)00211-0.

[134]

C. Simó and A. Susín, Connections between invariant manifolds in the collision manifold of the planar three-body problem, in The Geometry of Hamiltonian Systems, 497–518, Math. Sci. Res. Inst. Publ., 22, Springer, New York, 1991. doi: 10.1007/978-1-4613-9725-0_18.

[135]

C. Simó and A. Susín, Equilibrium connections in the triple collision manifold, in Predictability, Stability and Chaos in the N-Body Dynamical Systems, 481–491, NATO Adv. Sci. Inst. Ser. B Phys., 272, Plenum, New York, 1991.

[136]

K. Sitnikov, The existence of oscillatory motions in the three-body problems, Soviet Physics Doklady, 5 (1960), 647-650.

[137]

Y. Sun and L. Zhou, Stickiness in three-dimensional volume preserving mappings, Celestial Mech. Dynam. Astronom., 103 (2009), 119-131. doi: 10.1007/s10569-008-9173-2.

[138]

V. Szebehely, Theory of Orbits, Academic Press, 1967.

[139]

S. Tompaidis, Approximation of invariant surfaces by periodic orbits in high-dimensional maps: some rigorous results, Experiment. Math., 5 (1996), 197-209. doi: 10.1080/10586458.1996.10504588.

[140]

G. Zaslavskii and B. Chirikov, Stochastic instability of nonlinear oscillations, Soviet Physics Uspekhi, 14 (1972), 549-568. doi: 10.3367/UFNr.0105.197109a.0003.

[141]

S. Ziglin, Branching of solutions and non existence of first integrals in Hamiltonian mechanics I, Funktsional. Anal. i Prilozhen, 16 (1982), 30-41, 96.

show all references

References:
[1]

G. Arioli and H. Koch, The critical renormalization fixed point for commuting pairs of area-preserving maps, Comm. Math. Phys., 295 (2010), 415-429. doi: 10.1007/s00220-009-0922-1.

[2]

V. Arnold, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40.

[3]

V. Arnold, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR, 156 (1964), 9-12.

[4]

V. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.

[5]

V. Arnold and A. Avez, Problèmes Ergodiques de la Mécanique Classique, Gauthier-Villars, Paris, 1967.

[6]

V. Arnold, V. Kozlov and A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics. Dynamical systems. III, 3$^{rd}$ edition, Encyclopedia of Mathematical Sciences, 3, Springer-Verlag, Berlin, 2006.

[7]

I. Baldomá and E. Fontich, Stable manifolds associated to fixed points with linear part equal to identity, J. Differential Equations, 197 (2004), 45-72. doi: 10.1016/j.jde.2003.07.005.

[8]

I. BaldomáE. FontichR. de la Llave and P. Martín, The parameterization method for one-dimensional invariant manifolds of higher dimensional parabolic points, Discrete Contin. Dyn. Syst. Ser. A, 17 (2007), 835-865. doi: 10.3934/dcds.2007.17.835.

[9]

I. BaldomáE. Fontich and P. Martín, Gevrey estimates for one-dimensional parabolic invariant manifolds of non-hyperbolic fixed points, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 4159-4190. doi: 10.3934/dcds.2017177.

[10]

I. Baldomá and À. Haro, One dimensional invariant manifolds of Gevrey type in real-analytic maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 295-322. doi: 10.3934/dcdsb.2008.10.295.

[11]

L. Biasco and L. Chierchia, On the measure of Lagrangian invariant tori in nearly-integrable mechanical system, Rend. Lincei Mat. Appl., 26 (2015), 423-432. doi: 10.4171/RLM/713.

[12]

K. Bjerklöv, SNA's in the quasiperiodic quadratic family, Comm. Math. Phys., 286 (2009), 137-161. doi: 10.1007/s00220-008-0626-y.

[13]

A. BounemouraB. Fayad and L. Niederman, Super exponential stability of quasiperiodic motion in Hamiltonian systems, Comm. Math. Phys., 350 (2017), 361-386. doi: 10.1007/s00220-016-2782-9.

[14]

H. Broer and C. Simó, Hill's equation with quasiperiodic forcing: Resonance tongues, instability pockets and global phenomena, Bul. Soc. Bras. Mat., 29 (1998), 253-293. doi: 10.1007/BF01237651.

[15]

H. BroerC. Simó and R. Vitolo, Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: analysis of a resonance "bubble", Physica D, 237 (2008), 1773-1799. doi: 10.1016/j.physd.2008.01.026.

[16]

H. BroerC. Simó and R. Vitolo, The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnold resonance web, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 769-787.

[17]

H. BroerC. Simó and R. Vitolo, Chaos and quasiperiodicity in diffeomorphisms of the solid torus, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871-905. doi: 10.3934/dcdsb.2010.14.871.

[18]

R. Calleja and R. de la Llave, A numerically accessible criterion for the breakdown of quasiperiodic solutions and its rigorous justification, Nonlinearity, 23 (2010), 2029-2058. doi: 10.1088/0951-7715/23/9/001.

[19]

R. Calleja and J-Ll. Figueras, Collision of invariant bundles of quasiperiodic attractors in the dissipative standard map, Chaos, 22 (2012), 033114, 10pp. doi: 10.1063/1.4737205.

[20]

M. Capiński and C. Simó, Computer assisted proof for normally hyperbolic invariant manifolds, Nonlinearity, 25 (2012), 1977-2026. doi: 10.1088/0951-7715/25/7/1997.

[21]

D. del-Castillo-NegreteJ. Greene and P. Morrison, Area preserving nontwist maps: Periodic orbits and transition to chaos, Physica D, 91 (1996), 1-23. doi: 10.1016/0167-2789(95)00257-X.

[22]

D. del-Castillo-NegreteJ. Greene and P. Morrison, Renormalization and transition to chaos in area preserving nontwist maps, Physica D, 100 (1997), 311-329. doi: 10.1016/S0167-2789(96)00200-X.

[23]

C. Cheng and Y. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom., 47 (1989/90), 275-292. doi: 10.1007/BF00053456.

[24]

C. Cheng and Y. Sun, Existence of periodically invariant curves in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom., 47 (1989/90), 293-303. doi: 10.1007/BF00053457.

[25]

B. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep., 52 (1979), 264-379. doi: 10.1016/0370-1573(79)90023-1.

[26]

A. DelshamsM. Gonchenko and P. Gutiérrez, Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tori with quadratic and cubic frequencies, Electronic Research Announcements in Math. Sci., 21 (2014), 41-61. doi: 10.3934/era.2014.21.41.

[27]

A. Delshams and P. Gutiérrez, Estimates on invariant tori near an elliptic equilibrium point of a Hamiltonian system, J. Differential Equations, 131 (1996), 277-303. doi: 10.1006/jdeq.1996.0165.

[28]

A. Delshams and R. de la Llave, KAM theory and a partial justification of Greene's criterion for non-twist maps, SIAM J. of Math. Anal., 31 (2000), 1235-1269. doi: 10.1137/S003614109834908X.

[29]

A. Delshams and R. Schaefer, Arnold diffusion for a complete family of perturbations, Regular and Chaotic Dynamics, 22 (2017), 78-108. doi: 10.1134/S1560354717010051.

[30]

A. Delshams and R. Schaefer, Arnold diffusion for a complete family of perturbations with two independent harmonics, Discrete Contin. Dyn. Syst. Ser. A, 38 (2018), 6047-6072.

[31]

H. Dullin and J. Meiss, Resonances and twist in volume-preserving maps, SIAM J. Appl. Dyn. Syst., 11 (2012), 319-349. doi: 10.1137/110846865.

[32]

F. DumortierS. IbáñezH. Kokubu and C. Simó, About the unfolding of a Hopf-zero singularity, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 4435-4471. doi: 10.3934/dcds.2013.33.4435.

[33]

C. Falcolini and R. de la Llave, A rigorous partial justification of Greene criterion, J. Statist. Phys., 67 (1992), 609-643. doi: 10.1007/BF01049722.

[34]

J.-L. Figueras and À. Haro, Different scenarios for hyperbolicity breakdown in quasiperiodic area preserving twist maps, Chaos, 25 (2015), 123119, 16pp. doi: 10.1063/1.4938185.

[35]

J.-L. Figueras and À. Haro, A note on the fractalization of saddle invariant curves in quasiperiodic systems, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1095-1107. doi: 10.3934/dcdss.2016043.

[36]

J-Ll. FiguerasÀ. Haro and A. Luque, Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193. doi: 10.1007/s10208-016-9339-3.

[37]

E. Fontich and C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices, Ergod. Th. and Dynam. Syst., 10 (1990), 319-346. doi: 10.1017/S0143385700005575.

[38]

E. Fontich and C. Simó, The splitting of separatrices for analytic diffeomorphisms, Ergod. Th. and Dynam. Syst., 10 (1990), 295-318. doi: 10.1017/S0143385700005563.

[39]

E. Fontich, C. Simó and A. Vieiro, Splitting of the separatrices after a Hamiltonian-Hopf bifurcation under periodic forcing, preprint, 2018.

[40]

E. Fontich, C. Simó and A. Vieiro, On the "hidden" harmonics associated to best approximants due to quasiperiodicity in splitting phenomena, preprint, 2018.

[41]

A. Fox and J. Meiss, Critical invariant circles in asymmetric and multiharmonic generalized standard maps, Comm. Nonlinear Sci. Numer. Simul., 19 (2014), 1004-1026. doi: 10.1016/j.cnsns.2013.07.028.

[42]

L. Garrido and C. Simó, Some ideas about strange attractors, in Proceed. Sitges Conference on Dynamical Systems and Chaos, Lect. Notes in Physics, 179, 1–28, Springer, 1983.

[43]

V. Gelfreich, A proof of the exponentially small transversality of the separatrices for the standard map, Comm. Math. Phys., 201 (1999), 155-216. doi: 10.1007/s002200050553.

[44]

V. GelfreichV. LazutkinC. Simó and M. Tabanov, Fern-like structures in the wild set of the standard and semistandard maps in $\mathbb{C}×\mathbb{C}$, Internat. J. of Bif. and Chaos, 2 (1992), 353-370. doi: 10.1142/S0218127492000343.

[45]

V. Gelfreich and C. Simó, High-precision computations of divergent asymptotic series and homoclinic phenomena, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 511-536. doi: 10.3934/dcdsb.2008.10.511.

[46]

A. GiorgilliA. DelshamsE. FontichL. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, J. Differential Equations, 77 (1989), 167-198. doi: 10.1016/0022-0396(89)90161-7.

[47]

S. GonchenkoI. OvsyannikovC. Simó and D. Turaev, Three-dimensional Hénon-like maps and wild Lorenz-like attractors, Internat. J. of Bif. and Chaos, 15 (2005), 3493-3508. doi: 10.1142/S0218127405014180.

[48]

A. González, À. Haro and R. de la Llave, Singularity theory for non-twist KAM tori, Mem. Amer. Math. Soc., 227 (2014), vi+115 pp.

[49]

A. González, À. Haro and R. de la Llave, Geometric and computational aspects of singularity theory for KAM tori, work in progress.

[50]

C. GrebogiE. OttS. Pelikan and J. Yorke, Strange attractors that are not chaotic, Physica D, 13 (1984), 261-268. doi: 10.1016/0167-2789(84)90282-3.

[51]

J. Greene, A method for determining stochastic transition, J. Math. Phys., 6 (1979), 1183-1201. doi: 10.2172/6191337.

[52]

M. GuardiaP. Martín and T. Martínez Seara, Oscillatory motions for the restricted planar circular three-body problem, Invent. math., 203 (2016), 417-492. doi: 10.1007/s00222-015-0591-y.

[53]

À. Haro, The Primitive Function of an Exact Symplectomorphism, Ph.D. thesis, Departament de Matemática Aplicada i Anàlisi, Universitat de Barcelona, 1998. doi: 10.1088/0951-7715/13/5/304.

[54]

À. Haro, M. Canadell, J-Ll. Figueras, A. Luque and J-M. Mondelo, The Parameterization Method for Invariant Manifolds. From Rigorous Results to Effective Computations, Applied Mathematical Sciences, 195, Springer, 2016. doi: 10.1007/978-3-319-29662-3.

[55]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasiperiodic maps: rigorous results, J. Differential Equations, 228 (2006), 530-579. doi: 10.1016/j.jde.2005.10.005.

[56]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasiperiodic maps: numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300. doi: 10.3934/dcdsb.2006.6.1261.

[57]

À. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown, Chaos, 16 (2006), 013120, 8pp. doi: 10.1063/1.2150947.

[58]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasiperiodic maps: explorations and mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst., 6 (2007), 142-207. doi: 10.1137/050637327.

[59]

À. Haro and J. Puig, Strange non-chaotic attractors in Harper maps, Chaos, 16 (2006), 033127, 7pp. doi: 10.1063/1.2259821.

[60]

J. Howard and S. Hohs, Stochasticity and reconnection in Hamiltonian systems, Physical Review A, 29 (1984), 418-421. doi: 10.1103/PhysRevA.29.418.

[61]

M. Irigoyen and C. Simó, Non-integrability of the $J_2$ problem, Celestial Mech. Dynam. Astronom., 55 (1993), 281-287. doi: 10.1007/BF00692515.

[62]

T. Jäger, The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations, Mem. Amer. Math. Soc., 201 (2009), vi+106 pp. doi: 10.1090/memo/0945.

[63]

T. Jäger, Strange non-chaotic attractors in quasiperiodically forced circle maps, Comm. Math. Phys., 289 (2009), 253-289. doi: 10.1007/s00220-009-0753-0.

[64]

À. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations, 98 (1992), 111-124. doi: 10.1016/0022-0396(92)90107-X.

[65]

À. Jorba and C. Simó, On quasiperiodic perturbations of elliptic equilibrium points, SIAM J. of Math. Anal., 27 (1996), 1704-1737. doi: 10.1137/S0036141094276913.

[66]

À. Jorba and J.-C. Tatjer, A mechanism for the fractalization of invariant curves in quasiperiodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567. doi: 10.3934/dcdsb.2008.10.537.

[67]

À. JorbaJ-C. TatjerC. Núñez and R. Obaya, Old and new results on strange non-chaotic attractors, Internat. J. of Bif. and Chaos, 17 (2007), 3895-3928. doi: 10.1142/S0218127407019780.

[68]

K. Kaneko, Fractalization of torus, Progr. Theoret. Phys., 71 (1984), 1112-1115. doi: 10.1143/PTP.71.1112.

[69]

G. Keller, A note on strange non-chaotic attractors, Fund. Math., 151 (1996), 139-148.

[70]

J. Ketoja and R. MacKay, Fractal boundary for the existence of invariant circles for area-preserving maps: Observations and renormalisation explanation, Physica D, 35 (1989), 318-334. doi: 10.1016/0167-2789(89)90073-0.

[71]

K. KhaninJ. Lopes-Dias and J. Marklof, Renormalization of multidimensional Hamiltonian flows, Nonlinearity, 19 (2006), 2727-2753. doi: 10.1088/0951-7715/19/12/001.

[72]

K. KhaninJ. Lopes-Dias and J. Marklof, Multidimensional continued fractions, dynamical renormalization and KAM theory, Comm. Math. Phys., 270 (2007), 197-231. doi: 10.1007/s00220-006-0125-y.

[73]

A. Khinchin, Continued Fractions, The University of Chicago Press, Chicago, Ill.- London, 1964.

[74]

H. Koch, A renormalization group fixed point associated with the breakup of golden invariant tori, Discrete Contin. Dyn. Syst. Ser. A, 11 (2004), 881-909. doi: 10.3934/dcds.2004.11.881.

[75]

A. Kolmogorov, On the conservation of conditionally periodic motions under small perturbation on the Hamiltonian, Dokl. Akad. Nauk SSSR, 98 (1954), 527-530.

[76]

E. Lacomba and C. Simó, Analysis of quadruple collision in some degenerate cases, Celestial Mech. Dynam. Astronom. 28 (1982), 49–62. doi: 10.1007/BF01230659.

[77]

E. Lacomba and C. Simó, Regularization of simultaneous binary collisions, J. Differential Equations 98 (1992), 241–259. doi: 10.1016/0022-0396(92)90092-2.

[78]

V. Lazutkin and C. Simó, Homoclinic orbits in the complex domain, Internat. J. of Bif. and Chaos, 7 (1997), 253-274. doi: 10.1142/S0218127497000182.

[79]

A. Litvak-Hinenzon and V. Rom-Kedar, Symmetry-breaking perturbations and strange attractors, Physical Review E, 55 (1997), 4964-4978. doi: 10.1103/PhysRevE.55.4964.

[80]

R. de la Llave, A tutorial on KAM theory, in Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69. 175–292. Amer. Math. Soc., Providence, RI, 2001. doi: 10.1090/pspum/069/1858536.

[81]

R. de la LlaveA. GonzálezÀ. Jorba and J. Villanueva, KAM theory without action-angle variables, Nonlinearity, 18 (2005), 855-895. doi: 10.1088/0951-7715/18/2/020.

[82]

R. de la Llave and A. Olvera, The obstruction criterion for non existence of invariant circles and renormalization, Nonlinearity, 19 (2006), 1907-1937. doi: 10.1088/0951-7715/19/8/008.

[83]

J. Llibre, R. Moeckel and Simó, Central Configurations, Periodic Orbits and Hamiltonian Systems, in Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser, 240 pp., 2015.

[84]

H. Lomelí and R. Calleja, Heteroclinic bifurcations and chaotic transport in the two-harmonic standard map, Chaos, 16 (2006), 023117, 8pp. doi: 10.1063/1.2179647.

[85]

R. MacKay, A renormalization approach to invariant circles in area-preserving maps, Physica D, 7 (1983), 283-300. doi: 10.1016/0167-2789(83)90131-8.

[86]

R. MacKay, Hyperbolic Cantori have dimension zero, J. Phys. A: Math. Gen., 20 (1987), L559-L561. doi: 10.1088/0305-4470/20/9/002.

[87]

R. MacKay, Greene's residue criterion, Nonlinearity, 5 (1992), 161-187. doi: 10.1088/0951-7715/5/1/007.

[88]

R. MacKay, Renormalization in Area-Preserving Maps, Advanced Series in Nonlinear Dynamics 6, World Scientific, 1993. doi: 10.1142/9789814354462.

[89]

R. MacKay and J. Stark, Locally most robust circles and boundary circles for area-preserving maps, Nonlinearity, 5 (1992), 867-888. doi: 10.1088/0951-7715/5/4/002.

[90]

R. Martínez and C. Simó, Simultaneous binary collisions in the planar four body problem, Nonlinearity, 12 (1999), 903-930. doi: 10.1088/0951-7715/12/4/310.

[91]

R. Martínez and C. Simó, The degree of differentiability of the regularization of simultaneous binary collisions in some $N$-body problems, Nonlinearity, 13 (2000), 2107-2130. doi: 10.1088/0951-7715/13/6/312.

[92]

R. Martínez and C. Simó, Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples, Regular and Chaotic Dynamics, 14 (2009), 323-348. doi: 10.1134/S1560354709030010.

[93]

R. Martínez and C. Simó, Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations, Discrete Contin. Dyn. Syst. Ser. A, 29 (2011), 1-24. doi: 10.3934/dcds.2011.29.1.

[94]

R. Martínez and C. Simó, The invariant manifolds at infinity of the restricted three-body problem and the boundaries of bounded motion, Regular and Chaotic Dynamics, 19 (2014), 745-765. doi: 10.1134/S1560354714060112.

[95]

R. Martínez and C. Simó, Return maps, dynamical consequences and applications, Qualitative Theory of Dynamical Systems, 14 (2015), 353-379. doi: 10.1007/s12346-015-0154-z.

[96]

R. Martínez, C. Simó and A. Susín, Regularizable and non-regularizable collisions in N-body problems, International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), World Sci. Publ., River Edge, NJ, (2000), 12–19.

[97]

J. Mather, Non existence of invariant circles, Ergod. Th. and Dynam. Syst., 4 (1984), 301-309. doi: 10.1017/S0143385700002455.

[98]

J. Mather, A criterion for the non existence of invariant circles, IHES Publ. Math., 63 (1986), 153-204.

[99]

R. McGehee, A stable manifold theorem for degenerate fixed points with applications to celestial mechanics, J. Differential Equations, 14 (1973), 70-88. doi: 10.1016/0022-0396(73)90077-6.

[100]

A. MedvedevA. Neishtadt and D. Treschev, Lagrangian tori near resonances of near-integrable Hamiltonian systems, Nonlinearity, 28 (2015), 2105-2130. doi: 10.1088/0951-7715/28/7/2105.

[101]

J. Meiss, N. Miguel, C. Simó and A. Vieiro, Stickiness, accelerator modes and anomalous diffusion due to a resonance bubble emerging from a Hopf-saddle-node bifurcation in 3D volume preserving maps, preprint, 2018.

[102]

N. MiguelC. Simó and A. Vieiro, From the Hénon conservative map to the Chirikov standard map for large parameter values, Regular and Chaotic Dynamics, 18 (2013), 469-489. doi: 10.1134/S1560354713050018.

[103]

J.-J. Morales, Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics 179, Birkhäuser, 1999. doi: 10.1007/978-3-0348-8718-2.

[104]

J.-J. Morales and J.-M. Peris, On a Galoisian approach to the splitting of separatrices, Ann. Fac. Sci. Toulouse Math., 8 (1999), 125-141. doi: 10.5802/afst.925.

[105]

J.-J. Morales and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems, Methods and Applications of Analysis, 8 (2001), 33-95. doi: 10.4310/MAA.2001.v8.n1.a3.

[106]

J.-J. Morales and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems Ⅱ, Methods and Applications of Analysis, 8 (2001), 97-111. doi: 10.4310/MAA.2001.v8.n1.a3.

[107]

J.-J. Morales and J.-P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential, Methods and Applications of Analysis, 8 (2001), 113-120. doi: 10.4310/MAA.2001.v8.n1.a5.

[108]

J.-J. MoralesJ.-P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Annales Sci. de l'ENS 4e série, 40 (2007), 845-884. doi: 10.1016/j.ansens.2007.09.002.

[109]

J.-J. Morales and C. Simó, Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Differential Equations, 129 (1996), 111-135. doi: 10.1006/jdeq.1996.0113.

[110]

A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys., 78 (1995), 1607-1617. doi: 10.1007/BF02180145.

[111]

P. Morrison, Magnetic field lines, Hamiltonian dynamics, and nontwist systems, Physics of Plasmas, 7 (2000), 2279-2289. doi: 10.1063/1.874062.

[112]

J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Gttingen Math.-Phys. Kl. II, 1962 (1962), 1-20.

[113]

J. Moser, Stable and Random Motions in Dynamical Systems, Annals of Mathematics Studies, Princeton Univ. Press, 1973.

[114]

A. Neishtadt, The separation of motions in systems with rapidly rotating phase, Prikladnaja Matematika i Mekhanika, 48 (1984), 133-139. doi: 10.1016/0021-8928(84)90078-9.

[115]

N. Nekhorosev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russian Mathematical Surveys, 32 (1977), 5-66.

[116]

A. Olvera and C. Simó, An obstruction method for the destruction of invariant curves, Physica D, 26 (1987), 181-192. doi: 10.1016/0167-2789(87)90222-3.

[117]

G. Piftankin and D. Treschev, Separatrix maps in Hamiltonian systems, Russian Mathematical Surveys, 62 (2007), 219-322. doi: 10.1070/RM2007v062n02ABEH004396.

[118]

J. Puig and C. Simó, Analytic families of reducible linear quasiperiodic differential equations, Ergod. Th. and Dynam. Syst., 26 (2006), 481-524. doi: 10.1017/S0143385705000362.

[119]

J. Puig and C. Simó, Resonance tongues and Spectral gaps in quasiperiodic Schrödinger operators with one or more frequencies. A numerical exploration, J. of Dynamics and Diff. Eq., 23 (2011), 649-669. doi: 10.1007/s10884-010-9199-5.

[120]

J. Puig and C. Simó, Resonance tongues in the quasiperiodic Hill-Schr¨odinger equation with three frequencies, Regular and Chaotic Dynamics, 16 (2011), 61-78. doi: 10.1134/S1560354710520047.

[121]

H. Rüssmann and I. Kleine Nenner, Über invariante kurven differenzierbarer abbildungen eines kreisringes, Nach. Akad. Wiss. Göttingen Math.-Phys.Kl. II, 1970 (1970), 67-105.

[122]

H. Rüssmann, On the existence of invariant curves of twist mappings of an annulus, Geometric Dynamics (Rio de Janeiro, 1981), 677–718, Lecture Notes in Math. 1007, Springer, 1983. doi: 10.1007/BFb0061441.

[123]

H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regular and Chaotic Chaotic Dynamics, 6 (2001), 119-204. doi: 10.1070/RD2001v006n02ABEH000169.

[124]

C. Simó, Estimates of the error in normal forms of Hamiltonian systems. Applications to effective stability. Examples, in Long-term Dynamical Behavior of Natural and Artificial N-body Systems, A.E. Roy, ed., 481–503, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 246, Kluwer Acad. Publ., Dordrecht, 1988.

[125]

C. Simó, Analytical and numerical computation of invariant manifolds, in Modern Methods in Celestial Mechanics, D. Benest and C. Froeschlé, editors, 285–330, Editions Frontières, 1990.

[126]

C. Simó, Measuring the lack of integrability in the J2 problem, in Predictability, Stability and Chaos in the N-body Dynamical Systems, A.E. Roy, editor, 305–309, NATO Adv. Sci. Inst. Ser. B Phys., 272, Plenum, New York, 1991.

[127]

C. Simó, Averaging under fast quasiperiodic forcing, Hamiltonian Mechanics, 13–34, NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum, New York, 1994.

[128]

C. Simó, Invariant curves of perturbations of non-twist integrable area preserving maps, Regular and Chaotic Dynamics, 3 (1998), 180-195. doi: 10.1070/rd1998v003n03ABEH000088.

[129]

C. Simó, Effective computations in celestial mechanics and astrodynamics, in Modern Methods of Analytical Mechanics and their Applications, V. V. Rumyantsev and A. V. Karapetyan, ed., CISM Courses and Lectures 387, 55–102, Springer, 1998.

[130]

C. Simó, Measuring the total amount of chaos in some Hamiltonian systems, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 5135-5164. doi: 10.3934/dcds.2014.34.5135.

[131]

C. Simó, Experiments looking for theoretical predictions, Indagationes Mathematicae, 27 (2016), 1069-1080. doi: 10.1016/j.indag.2015.11.013.

[132]

C. Simó, P. Sousa-Silva and M. Terra, Practical stability domains near L4, 5 in the restricted three-body problem: Some preliminary facts, in Progress and Challenges in Dynamical Systems, 54, 367–382, Springer, 2013. doi: 10.1007/978-3-642-38830-9_23.

[133]

C. Simó and T. Stuchi, Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem, Physica D, 140 (2000), 1-32. doi: 10.1016/S0167-2789(99)00211-0.

[134]

C. Simó and A. Susín, Connections between invariant manifolds in the collision manifold of the planar three-body problem, in The Geometry of Hamiltonian Systems, 497–518, Math. Sci. Res. Inst. Publ., 22, Springer, New York, 1991. doi: 10.1007/978-1-4613-9725-0_18.

[135]

C. Simó and A. Susín, Equilibrium connections in the triple collision manifold, in Predictability, Stability and Chaos in the N-Body Dynamical Systems, 481–491, NATO Adv. Sci. Inst. Ser. B Phys., 272, Plenum, New York, 1991.

[136]

K. Sitnikov, The existence of oscillatory motions in the three-body problems, Soviet Physics Doklady, 5 (1960), 647-650.

[137]

Y. Sun and L. Zhou, Stickiness in three-dimensional volume preserving mappings, Celestial Mech. Dynam. Astronom., 103 (2009), 119-131. doi: 10.1007/s10569-008-9173-2.

[138]

V. Szebehely, Theory of Orbits, Academic Press, 1967.

[139]

S. Tompaidis, Approximation of invariant surfaces by periodic orbits in high-dimensional maps: some rigorous results, Experiment. Math., 5 (1996), 197-209. doi: 10.1080/10586458.1996.10504588.

[140]

G. Zaslavskii and B. Chirikov, Stochastic instability of nonlinear oscillations, Soviet Physics Uspekhi, 14 (1972), 549-568. doi: 10.3367/UFNr.0105.197109a.0003.

[141]

S. Ziglin, Branching of solutions and non existence of first integrals in Hamiltonian mechanics I, Funktsional. Anal. i Prilozhen, 16 (1982), 30-41, 96.

[1]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[2]

Marcio Antonio Jorge da Silva, Vando Narciso. Attractors and their properties for a class of nonlocal extensible beams. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 985-1008. doi: 10.3934/dcds.2015.35.985

[3]

Àlex Haro. On strange attractors in a class of pinched skew products. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 605-617. doi: 10.3934/dcds.2012.32.605

[4]

Kevin G. Hare, Nikita Sidorov. Open maps: Small and large holes with unusual properties. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5883-5895. doi: 10.3934/dcds.2018255

[5]

Max Fathi, Emanuel Indrei, Michel Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6835-6853. doi: 10.3934/dcds.2016097

[6]

Manfred Einsiedler and Elon Lindenstrauss. Rigidity properties of \zd-actions on tori and solenoids. Electronic Research Announcements, 2003, 9: 99-110.

[7]

Nobuyuki Kato. Linearized stability and asymptotic properties for abstract boundary value functional evolution problems. Conference Publications, 1998, 1998 (Special) : 371-387. doi: 10.3934/proc.1998.1998.371

[8]

S. Yu. Pilyugin, Kazuhiro Sakai, O. A. Tarakanov. Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 871-882. doi: 10.3934/dcds.2006.16.871

[9]

Agnes Lamacz, Ben Schweizer. Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 815-835. doi: 10.3934/dcdss.2017041

[10]

José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1

[11]

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27

[12]

Mei-Qin Zhan. Gevrey class regularity for the solutions of the Phase-Lock equations of Superconductivity. Conference Publications, 2001, 2001 (Special) : 406-415. doi: 10.3934/proc.2001.2001.406

[13]

Bixiang Wang, Shouhong Wang. Gevrey class regularity for the solutions of the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 507-522. doi: 10.3934/dcds.1998.4.507

[14]

Nan Chen, Cheng Wang, Steven Wise. Global-in-time Gevrey regularity solution for a class of bistable gradient flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1689-1711. doi: 10.3934/dcdsb.2016018

[15]

Mariko Arisawa, Hitoshi Ishii. Some properties of ergodic attractors for controlled dynamical systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 43-54. doi: 10.3934/dcds.1998.4.43

[16]

Aubin Arroyo, Enrique R. Pujals. Dynamical properties of singular-hyperbolic attractors. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 67-87. doi: 10.3934/dcds.2007.19.67

[17]

Stuart S. Antman. Regularity properties of planar motions of incompressible rods. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 481-494. doi: 10.3934/dcdsb.2003.3.481

[18]

Michel H. Geoffroy, Alain Piétrus. Regularity properties of a cubically convergent scheme for generalized equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 983-996. doi: 10.3934/cpaa.2007.6.983

[19]

Aníbal Rodríguez-Bernal, Alejandro Vidal–López. Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 537-567. doi: 10.3934/dcds.2007.18.537

[20]

Monica Lazzo, Paul G. Schmidt. Nodal properties of radial solutions for a class of polyharmonic equations. Conference Publications, 2007, 2007 (Special) : 634-643. doi: 10.3934/proc.2007.2007.634

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (189)
  • HTML views (196)
  • Cited by (0)

Other articles
by authors

[Back to Top]