December 2018, 38(12): 6029-6045. doi: 10.3934/dcds.2018260

On the graph theorem for Lagrangian minimizing tori

1. 

Dep. de Matemática - ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil

2. 

Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, 22453-900, Brazil

* Corresponding author: Rafael O. Ruggiero

Received  September 2017 Revised  April 2018 Published  September 2018

Fund Project: The research project is partially supported by CNPq, FAPERJ (Cientistas do nosso estado), Pronex de Geometria, Pronex de Sistemas Dinómicos (Brazil), CNRS, unité FR2291 FRUMAM

We study the graph property for Lagrangian minimizing submanifolds of the geodesic flow of a Riemannian metric in the torus $ (T^{n},g) $, $ n>2 $. It is well known that the transitivity of the geodesic flow in a minimizing Lagrangian submanifold implies the graph property. We replace the transitivity by three kind of assumptions: (1) $ r $-density of the set of recurrent orbits for some $ r>0 $ depending on $ g $, (2) $ r $-density of the limit set, (3) every point is nonwandering. Then we show that a Lagrangian, minimizing torus satisfying one of such assumptions is a graph.

Citation: Mario Jorge Dias Carneiro, Rafael O. Ruggiero. On the graph theorem for Lagrangian minimizing tori. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6029-6045. doi: 10.3934/dcds.2018260
References:
[1]

L. Amorim, Y.-G. Oh and J. O. Dos Santos, Exact Lagrangian submanifolds, Lagrangian Spectral Invariants and Aubry-Mather Theory, arXiv: 1603.06966v4

[2]

M. C. Arnaud, On a Theorem Due to Birkhoff, GAFA, 20 (2010), 1307-1316. doi: 10.1007/s00039-010-0091-6.

[3]

M. C. Arnaud, When are invariant sumanifolds of symplectic dynamics Lagrangian?, Discrete and Continuos Dynamical Systems-A, 34 (2014), 1811-1827. doi: 10.3934/dcds.2014.34.1811.

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1978, Berlin, Heidelberg, New York.

[5]

V. I. Arnold, Sturm theorems and symplectic geometry, Functional Anal. and Its Appl., 19 (1985), 1-10.

[6]

V. Bangert, Mather sets for twist maps and geodesic on tori, In U. Kirchgraber, H. O. Walther (eds.) Dynamics Reported, Vol. 1, B. G. Teubner, J. Wiley, 1988, 1-56

[7]

V. Bangert, Minimal geodesics, Erg. Th. Dyn. Sys., 10 (1990), 263-286. doi: 10.1017/S014338570000554X.

[8]

P. Bernard and J. O. dos Santos, A geometric definition of the Mañé-Mather set an a theorem of Marie-Claude Arnaud, Math Proc. Cambridge Philos. Soc., 152 (2012), 167-178. doi: 10.1017/S0305004111000685.

[9]

M. Bialy, Aubry-Mather sets and Birkhoff's theorem for geodesic flows on the two dimensional torus, Communications in Math. Physics, 126 (1989), 13-24. doi: 10.1007/BF02124329.

[10]

M. Bialy and L. Polterovich, Geodesic flows on the two dimensional torus and phase transitions ''commensurability-noncommensurability", Funk. Anal. Appl., 20 (1986), 223-226.

[11]

M. Bialy and L. Polterovich, Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom, Invent. math., 97 (1989), 291-303. doi: 10.1007/BF01389043.

[12]

M. Bialy and L. Polterovich, Hamiltonian systems, Lagrangian tori and Birkhoff's theorem, Math. Ann., 292 (1992), 619-627. doi: 10.1007/BF01444639.

[13]

M. Bialy and L. Polterovich, Invariant tori and symplectic topology, Amer. Math. Soc. Transl., 171 (1996), 23-33. doi: 10.1090/trans2/171/03.

[14]

A. Candel and L. Conlon, Foliations I. Graduate Studies in Mathematics, vol. 23. Amer. Math. Soc. Providence, Rhode Island, 2000.

[15]

M. J. Dias Carneiro and R. Ruggiero, On Variational and topological properties of C1 invariant Lagrangian tori, Ergodic Theory and Dynamical systems, 24 (2004), 1909-1935. doi: 10.1017/S0143385704000379.

[16]

M. J. Dias Carneiro and R. Ruggiero, On Birkhoff Theorems for Lagrangian invariant tori with closed orbits, Manuscripta Mathematica, 119 (2006), 411-432. doi: 10.1007/s00229-005-0619-5.

[17]

C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc., 158 (1971), 35-61. doi: 10.1090/S0002-9947-1971-0279830-1.

[18]

G. ContrerasJ. Delgado and R. Iturriaga, Lagrangian flows: The dynamics of globally minimizing orbits Ⅱ, Bol. Soc. Bras. Mat., 28 (1997), 155-196. doi: 10.1007/BF01233390.

[19]

G. ContrerasJ. M. GambaudoR. Iturriaga and G. Paternain, The asymptotic Maslov index and its applications, Ergodic Theory Dynam. Systems, 23 (2003), 1415-1443. doi: 10.1017/S0143385703000063.

[20]

G. ContrerasR. IturriagaG. Paternain and M. Paternain, Lagrangian graphs, minimizing measures, and Mañé's critical values,, Geom. Funct. Anal., 8 (1998), 788-809. doi: 10.1007/s000390050074.

[21]

G. Contreras and R. Iturriaga, Convex Hamiltonians without conjugate points, Ergod. Th. Dyn. Sys., 19 (1999), 901-952. doi: 10.1017/S014338579913387X.

[22]

G. Contreras and R. Iturriaga, Global Minimizers of Autonomous Lagrangians, 22 Colóquio Brasileiro de Matemática, IMPA, Rio de Janeiro, 1999.

[23]

P. Eberlein, When is a geodesic flow of Anosov type? Ⅰ, J. Differential Geometry, 8 (1973), 437-463. doi: 10.4310/jdg/1214431801.

[24]

A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Lyon (notes), 2000.

[25]

L. W. Green, Surfaces without conjugate points, Transactions of the American Mathematical Society, 76 (1954), 529-546. doi: 10.1090/S0002-9947-1954-0063097-3.

[26]

L. W. Green, A theorem of E. Hopf, Michigan Math. J., 5 (1958), 31-34. doi: 10.1307/mmj/1028998009.

[27]

M. Herman, Inégalités a priori pour des tores lagrangiens invariants par des difféomorphismes symplectiques, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 70 (1989), 47-101.

[28]

E. Hopf, Closed surfaces without conjugate points, Proceedings of the National Academy of Sciences, 34 (1948), 47-51. doi: 10.1073/pnas.34.2.47.

[29]

O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 250 (1971), 124-129. doi: 10.1515/crll.1971.250.124.

[30]

R. Mañé, On the minimizing measures of Lagrangian dynamical systems, Nonlinearity, 5 (1992), 623-638. doi: 10.1088/0951-7715/5/3/001.

[31]

R. Mañé, Global variational methods in conservative dynamics, IMPA, Rio de Janeiro, 1993.

[32]

J. Mather, Action minimizing measures for positive definite Lagrangian systems, Math. Z., 207 (1991), 169-207. doi: 10.1007/BF02571383.

[33]

D. McDuff and D. Salamon, Introduction to Symplectic Topology, Claredon Press, Oxford, 1995.

[34]

J. M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc., 26 (1924), 25-60. doi: 10.1090/S0002-9947-1924-1501263-9.

[35]

J. M. Morse, Calculus of variations in the large, AMS Colloquium Publications XVIII, Providence, RI, 1996.

[36]

G. Paternain, Geodesic Flows, Progress in Mathematics vol. 180, Birkhauser, Boston, Mass. 1999. doi: 10.1007/978-1-4612-1600-1.

[37]

J. Pesin, Geodesic flows on closed Riemmanian manifolds without focal points, Math. USSR Izvestija, 11 (1977), 1195-1228.

[38]

L. Polterovich, The second Birkhoff theorem for optical Hamiltonian systems, Proceedings of the AMS, 113 (1991), 513-516. doi: 10.1090/S0002-9939-1991-1043418-3.

[39]

R. Ruggiero, Manifolds admitting continuous foliations by geodesics, Geometriae Dedicata, 78 (1999), 161-170. doi: 10.1023/A:1005228901975.

[40]

C. Viterbo, A new obstruction to embedding Lagrangian tori, Invent. Math., 100 (1990), 301-320. doi: 10.1007/BF01231188.

show all references

References:
[1]

L. Amorim, Y.-G. Oh and J. O. Dos Santos, Exact Lagrangian submanifolds, Lagrangian Spectral Invariants and Aubry-Mather Theory, arXiv: 1603.06966v4

[2]

M. C. Arnaud, On a Theorem Due to Birkhoff, GAFA, 20 (2010), 1307-1316. doi: 10.1007/s00039-010-0091-6.

[3]

M. C. Arnaud, When are invariant sumanifolds of symplectic dynamics Lagrangian?, Discrete and Continuos Dynamical Systems-A, 34 (2014), 1811-1827. doi: 10.3934/dcds.2014.34.1811.

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1978, Berlin, Heidelberg, New York.

[5]

V. I. Arnold, Sturm theorems and symplectic geometry, Functional Anal. and Its Appl., 19 (1985), 1-10.

[6]

V. Bangert, Mather sets for twist maps and geodesic on tori, In U. Kirchgraber, H. O. Walther (eds.) Dynamics Reported, Vol. 1, B. G. Teubner, J. Wiley, 1988, 1-56

[7]

V. Bangert, Minimal geodesics, Erg. Th. Dyn. Sys., 10 (1990), 263-286. doi: 10.1017/S014338570000554X.

[8]

P. Bernard and J. O. dos Santos, A geometric definition of the Mañé-Mather set an a theorem of Marie-Claude Arnaud, Math Proc. Cambridge Philos. Soc., 152 (2012), 167-178. doi: 10.1017/S0305004111000685.

[9]

M. Bialy, Aubry-Mather sets and Birkhoff's theorem for geodesic flows on the two dimensional torus, Communications in Math. Physics, 126 (1989), 13-24. doi: 10.1007/BF02124329.

[10]

M. Bialy and L. Polterovich, Geodesic flows on the two dimensional torus and phase transitions ''commensurability-noncommensurability", Funk. Anal. Appl., 20 (1986), 223-226.

[11]

M. Bialy and L. Polterovich, Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom, Invent. math., 97 (1989), 291-303. doi: 10.1007/BF01389043.

[12]

M. Bialy and L. Polterovich, Hamiltonian systems, Lagrangian tori and Birkhoff's theorem, Math. Ann., 292 (1992), 619-627. doi: 10.1007/BF01444639.

[13]

M. Bialy and L. Polterovich, Invariant tori and symplectic topology, Amer. Math. Soc. Transl., 171 (1996), 23-33. doi: 10.1090/trans2/171/03.

[14]

A. Candel and L. Conlon, Foliations I. Graduate Studies in Mathematics, vol. 23. Amer. Math. Soc. Providence, Rhode Island, 2000.

[15]

M. J. Dias Carneiro and R. Ruggiero, On Variational and topological properties of C1 invariant Lagrangian tori, Ergodic Theory and Dynamical systems, 24 (2004), 1909-1935. doi: 10.1017/S0143385704000379.

[16]

M. J. Dias Carneiro and R. Ruggiero, On Birkhoff Theorems for Lagrangian invariant tori with closed orbits, Manuscripta Mathematica, 119 (2006), 411-432. doi: 10.1007/s00229-005-0619-5.

[17]

C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc., 158 (1971), 35-61. doi: 10.1090/S0002-9947-1971-0279830-1.

[18]

G. ContrerasJ. Delgado and R. Iturriaga, Lagrangian flows: The dynamics of globally minimizing orbits Ⅱ, Bol. Soc. Bras. Mat., 28 (1997), 155-196. doi: 10.1007/BF01233390.

[19]

G. ContrerasJ. M. GambaudoR. Iturriaga and G. Paternain, The asymptotic Maslov index and its applications, Ergodic Theory Dynam. Systems, 23 (2003), 1415-1443. doi: 10.1017/S0143385703000063.

[20]

G. ContrerasR. IturriagaG. Paternain and M. Paternain, Lagrangian graphs, minimizing measures, and Mañé's critical values,, Geom. Funct. Anal., 8 (1998), 788-809. doi: 10.1007/s000390050074.

[21]

G. Contreras and R. Iturriaga, Convex Hamiltonians without conjugate points, Ergod. Th. Dyn. Sys., 19 (1999), 901-952. doi: 10.1017/S014338579913387X.

[22]

G. Contreras and R. Iturriaga, Global Minimizers of Autonomous Lagrangians, 22 Colóquio Brasileiro de Matemática, IMPA, Rio de Janeiro, 1999.

[23]

P. Eberlein, When is a geodesic flow of Anosov type? Ⅰ, J. Differential Geometry, 8 (1973), 437-463. doi: 10.4310/jdg/1214431801.

[24]

A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Lyon (notes), 2000.

[25]

L. W. Green, Surfaces without conjugate points, Transactions of the American Mathematical Society, 76 (1954), 529-546. doi: 10.1090/S0002-9947-1954-0063097-3.

[26]

L. W. Green, A theorem of E. Hopf, Michigan Math. J., 5 (1958), 31-34. doi: 10.1307/mmj/1028998009.

[27]

M. Herman, Inégalités a priori pour des tores lagrangiens invariants par des difféomorphismes symplectiques, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 70 (1989), 47-101.

[28]

E. Hopf, Closed surfaces without conjugate points, Proceedings of the National Academy of Sciences, 34 (1948), 47-51. doi: 10.1073/pnas.34.2.47.

[29]

O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 250 (1971), 124-129. doi: 10.1515/crll.1971.250.124.

[30]

R. Mañé, On the minimizing measures of Lagrangian dynamical systems, Nonlinearity, 5 (1992), 623-638. doi: 10.1088/0951-7715/5/3/001.

[31]

R. Mañé, Global variational methods in conservative dynamics, IMPA, Rio de Janeiro, 1993.

[32]

J. Mather, Action minimizing measures for positive definite Lagrangian systems, Math. Z., 207 (1991), 169-207. doi: 10.1007/BF02571383.

[33]

D. McDuff and D. Salamon, Introduction to Symplectic Topology, Claredon Press, Oxford, 1995.

[34]

J. M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc., 26 (1924), 25-60. doi: 10.1090/S0002-9947-1924-1501263-9.

[35]

J. M. Morse, Calculus of variations in the large, AMS Colloquium Publications XVIII, Providence, RI, 1996.

[36]

G. Paternain, Geodesic Flows, Progress in Mathematics vol. 180, Birkhauser, Boston, Mass. 1999. doi: 10.1007/978-1-4612-1600-1.

[37]

J. Pesin, Geodesic flows on closed Riemmanian manifolds without focal points, Math. USSR Izvestija, 11 (1977), 1195-1228.

[38]

L. Polterovich, The second Birkhoff theorem for optical Hamiltonian systems, Proceedings of the AMS, 113 (1991), 513-516. doi: 10.1090/S0002-9939-1991-1043418-3.

[39]

R. Ruggiero, Manifolds admitting continuous foliations by geodesics, Geometriae Dedicata, 78 (1999), 161-170. doi: 10.1023/A:1005228901975.

[40]

C. Viterbo, A new obstruction to embedding Lagrangian tori, Invent. Math., 100 (1990), 301-320. doi: 10.1007/BF01231188.

[1]

Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643

[2]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[3]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[4]

Fabio Camilli, Adriano Festa, Silvia Tozza. A discrete Hughes model for pedestrian flow on graphs. Networks & Heterogeneous Media, 2017, 12 (1) : 93-112. doi: 10.3934/nhm.2017004

[5]

Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173

[6]

Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104.

[7]

Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933

[8]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[9]

Kaizhi Wang, Yong Li. Existence and monotonicity property of minimizers of a nonconvex variational problem with a second-order Lagrangian. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 687-699. doi: 10.3934/dcds.2009.25.687

[10]

Shijin Ding, Qiang Du. The global minimizers and vortex solutions to a Ginzburg-Landau model of superconducting films. Communications on Pure & Applied Analysis, 2002, 1 (3) : 327-340. doi: 10.3934/cpaa.2002.1.327

[11]

Laurence Guillot, Maïtine Bergounioux. Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1333-1349. doi: 10.3934/cpaa.2009.8.1333

[12]

Salvador Villegas. Nonexistence of nonconstant global minimizers with limit at $\infty$ of semilinear elliptic equations in all of $R^N$. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1817-1821. doi: 10.3934/cpaa.2011.10.1817

[13]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[14]

Serge Tabachnikov. Birkhoff billiards are insecure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1035-1040. doi: 10.3934/dcds.2009.23.1035

[15]

Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623

[16]

G. A. Enciso, E. D. Sontag. Global attractivity, I/O monotone small-gain theorems, and biological delay systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 549-578. doi: 10.3934/dcds.2006.14.549

[17]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[18]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[19]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[20]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (27)
  • HTML views (31)
  • Cited by (0)

[Back to Top]