November 2018, 38(11): 5943-5961. doi: 10.3934/dcds.2018258

Global existence and boundedness in a chemorepulsion system with superlinear diffusion

Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany

* Corresponding author: Marcel Freitag

Received  May 2018 Revised  June 2018 Published  August 2018

Fund Project: The author is supported by the Deutsche Forschungsgemeinschaft

In a bounded domain
$\Omega\subset\mathbb{R}^n$
, where
$n\ge 3$
, we consider the quasilinear parabolic-parabolic Keller-Segel system
$\begin{equation*}\begin{cases}u_t = \nabla\cdot({D(u)\nabla u+u\nabla v}) \;\;\; &\text{in}\ \Omega\times(0,\infty)\\v_t = \Delta v-v+u &\text{in}\ \Omega\times(0,\infty)\end{cases}\end{equation*}$
with homogeneous Neumann boundary conditions. We will find that the condition
$D(u)\geq Cu^{m-1}$
suffices to prove the uniqueness and global existence of solutions along with their boundedness if
$D(0)>0$
and
$m>1+\frac{(n-2)(n-1)}{n^2}$
which is a very different result from what we know about the same system with nonnegative sensitivity. In the case of degenerate diffusion (
$D(0) = 0$
) and for the same parameters, locally bounded global weak solutions will be established.
Citation: Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258
References:
[1]

N. BellomoA. BelloquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X.

[2]

H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., 1 (2001), 387-404. doi: 10.1007/PL00001378.

[3]

X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discr. Cont. Dyn. Syst. A, 35 (2005), 1891-1904. doi: 10.3934/dcds.2015.35.1891.

[4]

T. Cieślak, Quasilinear nonuniformly parabolic system modeling chemotaxis, J. Math. Anal. Appl., 326 (2007), 1410-1426. doi: 10.1016/j.jmaa.2006.03.080.

[5]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel systems in higher dimensions, J. Math. Anal. Appl., 326 (2007), 1410-1426. doi: 10.1016/j.jde.2012.01.045.

[6]

T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models, J. Differ. Eq., 258 (2015), 2080-2113. doi: 10.1016/j.jde.2014.12.004.

[7]

T. CieślakP. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system, Banach Center Publications, 81 (2008), 105-117. doi: 10.4064/bc81-0-7.

[8]

X., Fu, L. H. Tang, C. Liu, J. D. Huang, T. Hwa and P. Lenz, Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 198102.

[9]

K. FujieA. ItoM. Winkler and T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151-169. doi: 10.3934/dcds.2016.36.151.

[10]

H. Gajewski and K. Zacharias, Global behaviour of a reaction diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106.

[11]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997), 633-683.

[12]

T. Hillen and K. J. Painter, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.

[13]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[14]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363.

[15]

D. Horstmann and M. Winkler, Boundedness vs! blow-up in a chemotaxis system, Journal of Differential Equations, 215 (2015), 52-107. doi: 10.1016/j.jde.2004.10.022.

[16]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[17]

R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398. doi: 10.1016/j.jmaa.2008.01.005.

[18]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type, Amer. math. Soc., Providence RI. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 1968.

[19]

J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, Journal of Differential Equations, 262 (2017), 4052-4084. doi: 10.1016/j.jde.2016.12.007.

[20]

H. A. Levine and B. D. Sleeman, Partial differential equations of chemotaxis and angiogenesis. Applied mathematical analysis in the last century, Math. Meth. Appl. Sci., 24 (2001), 405-426. doi: 10.1002/mma.212.

[21]

J. F LeyvaC. Málaga and R. G. Plaza, The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion, Physica A, 392 (2013), 5644-5662. doi: 10.1016/j.physa.2013.07.022.

[22]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Annales de l'Institut Henri Poincaré C, Analyse non liné aire, 31 (2013), 851-875. doi: 10.1016/j.anihpc.2013.07.007.

[23]

N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional parabolic Keller-Segel system, J. Math. Pures Appl. (9), 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020.

[24]

T. NagaiT. Senba and K. Yoshida, Applications of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, Ser. Int., 40 (1997), 411-433.

[25]

L. Nirenberg, An extended interpolation inequality, Annali della Scuola Normale Superiore di Pisa, Classe die Scienze 3e sé rie, 20 (1966), 733-737.

[26]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2011), 441-469.

[27]

T. Senba and T. Suzuki, A quasi-linear system of chemotaxis, Abstr. Appl. Anal., 2006 (2006), Art. ID 23061, 21 pp. doi: 10.1155/AAA/2006/23061.

[28]

J. Simon, Compact sets in the space $L^p\left(0, T;B \right)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[29]

C. StinnerC. Surulescu and A. Uatay, Global existence for a go-or-grow multiscale model for tumor invasion with therapy, Math. Mod. Meth. Appl. Sci., 26 (2016), 2163-2201. doi: 10.1142/S021820251640011X.

[30]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007. doi: 10.1137/13094058X.

[31]

Y. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705-2722. doi: 10.3934/dcdsb.2013.18.2705.

[32]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, Journal of Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[33]

I. TuvalL. CisnerosC. DombrowskiC. W. WohlgemuthJ. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Nat. Accad. Sci. USA, 102 (2005), 2277-2282. doi: 10.1073/pnas.0406724102.

[34]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673. doi: 10.1002/mana.200810838.

[35]

M. Winkler, Does a volume-filling effect always prevent chemotactic collapse?, Math. Meth. Appl. Sci., 33 (2010), 12-24. doi: 10.1002/mma.1146.

[36]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Jornal of Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[37]

D. Wrzosek, Volume filling effect in modelling chemotaxis, Math. Mod. Nat. Phenom., 5 (2010), 123-147. doi: 10.1051/mmnp/20105106.

show all references

References:
[1]

N. BellomoA. BelloquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X.

[2]

H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., 1 (2001), 387-404. doi: 10.1007/PL00001378.

[3]

X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discr. Cont. Dyn. Syst. A, 35 (2005), 1891-1904. doi: 10.3934/dcds.2015.35.1891.

[4]

T. Cieślak, Quasilinear nonuniformly parabolic system modeling chemotaxis, J. Math. Anal. Appl., 326 (2007), 1410-1426. doi: 10.1016/j.jmaa.2006.03.080.

[5]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel systems in higher dimensions, J. Math. Anal. Appl., 326 (2007), 1410-1426. doi: 10.1016/j.jde.2012.01.045.

[6]

T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models, J. Differ. Eq., 258 (2015), 2080-2113. doi: 10.1016/j.jde.2014.12.004.

[7]

T. CieślakP. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system, Banach Center Publications, 81 (2008), 105-117. doi: 10.4064/bc81-0-7.

[8]

X., Fu, L. H. Tang, C. Liu, J. D. Huang, T. Hwa and P. Lenz, Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 198102.

[9]

K. FujieA. ItoM. Winkler and T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151-169. doi: 10.3934/dcds.2016.36.151.

[10]

H. Gajewski and K. Zacharias, Global behaviour of a reaction diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106.

[11]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997), 633-683.

[12]

T. Hillen and K. J. Painter, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.

[13]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[14]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363.

[15]

D. Horstmann and M. Winkler, Boundedness vs! blow-up in a chemotaxis system, Journal of Differential Equations, 215 (2015), 52-107. doi: 10.1016/j.jde.2004.10.022.

[16]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[17]

R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398. doi: 10.1016/j.jmaa.2008.01.005.

[18]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type, Amer. math. Soc., Providence RI. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 1968.

[19]

J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, Journal of Differential Equations, 262 (2017), 4052-4084. doi: 10.1016/j.jde.2016.12.007.

[20]

H. A. Levine and B. D. Sleeman, Partial differential equations of chemotaxis and angiogenesis. Applied mathematical analysis in the last century, Math. Meth. Appl. Sci., 24 (2001), 405-426. doi: 10.1002/mma.212.

[21]

J. F LeyvaC. Málaga and R. G. Plaza, The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion, Physica A, 392 (2013), 5644-5662. doi: 10.1016/j.physa.2013.07.022.

[22]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Annales de l'Institut Henri Poincaré C, Analyse non liné aire, 31 (2013), 851-875. doi: 10.1016/j.anihpc.2013.07.007.

[23]

N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional parabolic Keller-Segel system, J. Math. Pures Appl. (9), 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020.

[24]

T. NagaiT. Senba and K. Yoshida, Applications of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, Ser. Int., 40 (1997), 411-433.

[25]

L. Nirenberg, An extended interpolation inequality, Annali della Scuola Normale Superiore di Pisa, Classe die Scienze 3e sé rie, 20 (1966), 733-737.

[26]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2011), 441-469.

[27]

T. Senba and T. Suzuki, A quasi-linear system of chemotaxis, Abstr. Appl. Anal., 2006 (2006), Art. ID 23061, 21 pp. doi: 10.1155/AAA/2006/23061.

[28]

J. Simon, Compact sets in the space $L^p\left(0, T;B \right)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[29]

C. StinnerC. Surulescu and A. Uatay, Global existence for a go-or-grow multiscale model for tumor invasion with therapy, Math. Mod. Meth. Appl. Sci., 26 (2016), 2163-2201. doi: 10.1142/S021820251640011X.

[30]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007. doi: 10.1137/13094058X.

[31]

Y. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705-2722. doi: 10.3934/dcdsb.2013.18.2705.

[32]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, Journal of Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[33]

I. TuvalL. CisnerosC. DombrowskiC. W. WohlgemuthJ. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Nat. Accad. Sci. USA, 102 (2005), 2277-2282. doi: 10.1073/pnas.0406724102.

[34]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673. doi: 10.1002/mana.200810838.

[35]

M. Winkler, Does a volume-filling effect always prevent chemotactic collapse?, Math. Meth. Appl. Sci., 33 (2010), 12-24. doi: 10.1002/mma.1146.

[36]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Jornal of Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[37]

D. Wrzosek, Volume filling effect in modelling chemotaxis, Math. Mod. Nat. Phenom., 5 (2010), 123-147. doi: 10.1051/mmnp/20105106.

[1]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[2]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[3]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[4]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[5]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[6]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[7]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096

[8]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[9]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

[10]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[11]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[12]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

[13]

Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905

[14]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

[15]

Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677

[16]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[17]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[18]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[19]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[20]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (61)
  • HTML views (47)
  • Cited by (0)

Other articles
by authors

[Back to Top]