November 2018, 38(11): 5577-5613. doi: 10.3934/dcds.2018245

Hopf-Tsuji-Sullivan dichotomy for quotients of Hadamard spaces with a rank one isometry

Institut für Algebra und Geometrie, Karlsruhe Institute of Technology (KIT), Englerstr. 2, 76 131 Karlsruhe, Germany

* Corresponding author: Gabriele Link

Received  November 2017 Revised  June 2018 Published  August 2018

Let $X$ be a proper Hadamard space and $\Gamma <{\text{Is}}(X)$ a non-elementary discrete group of isometries with a rank one isometry. We discuss and prove Hopf-Tsuji-Sullivan dichotomy for the geodesic flow on the set of parametrized geodesics of the quotient $\Gamma \backslash X$ and with respect to Ricks' measure introduced in [35]. This generalizes previous work of the author and J. C. Picaud on Hopf-Tsuji-Sullivan dichotomy in the analogous manifold setting and with respect to Knieper's measure.

Citation: Gabriele Link. Hopf-Tsuji-Sullivan dichotomy for quotients of Hadamard spaces with a rank one isometry. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5577-5613. doi: 10.3934/dcds.2018245
References:
[1]

J. Aaronson and M. Denker, The Poincaré series of $\mathbb C\setminus \mathbb Z$, Ergodic Theory Dynam. Systems, 19 (1999), 1-20. doi: 10.1017/S0143385799126592.

[2]

J. Aaronson and D. Sullivan, Rational ergodicity of geodesic flows, Ergodic Theory Dynam. Systems, 4 (1984), 165-178. doi: 10.1017/S0143385700002364.

[3]

W. Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982), 131-144. doi: 10.1007/BF01456836.

[4]

W. Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. (2), 122 (1985), 597-609. doi: 10.2307/1971331.

[5]

W. Ballmann, Lectures on Spaces of Nonpositive Curvature, vol. 25 of DMV Seminar, Birkhäuser Verlag, Basel, 1995, With an appendix by Misha Brin. doi: 10.1007/978-3-0348-9240-7.

[6]

W. Ballmann and M. Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math., 82 (1995), 169-209.

[7]

W. BallmannM. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. Ⅰ, Ann. of Math. (2), 122 (1985), 171-203. doi: 10.2307/1971373.

[8]

W. Ballmann, M. Gromov and V. Schroeder, Manifolds of Nonpositive Curvature, vol. 61 of Progress in Mathematics, Birkhäuser Boston Inc., Boston, MA, 1985. doi: 10.1007/978-1-4684-9159-3.

[9]

V. Bangert and V. Schroeder, Existence of flat tori in analytic manifolds of nonpositive curvature, Ann. Sci. École Norm. Sup. (4), 24 (1991), 605-634. doi: 10.24033/asens.1638.

[10]

M. Bourdon, Structure conforme au bord et flot géodésique d'un $\rm CAT(-1)$-espace, Enseign. Math. (2), 41 (1995), 63-102.

[11]

M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-12494-9.

[12]

D. Burago, Y. Burago and S. Ivanov, A course in Metric Geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/033.

[13]

K. Burns, Hyperbolic behaviour of geodesic flows on manifolds with no focal points, Ergodic Theory Dynam. Systems, 3 (1983), 1-12. doi: 10.1017/S0143385700001796.

[14]

K. Burns and R. Spatzier, Manifolds of nonpositive curvature and their buildings, Inst. Hautes Etudes Sci. Publ. Math., 65 (1987), 35-59.

[15]

P-E. Caprace and K. Fujiwara, Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal., 19 (2010), 1296-1319. doi: 10.1007/s00039-009-0042-2.

[16]

M. Coornaert and A. Papadopoulos, Une dichotomie de Hopf pour les flots géodésiques associés aux groupes discrets d'isométries des arbres, Trans. Amer. Math. Soc., 343 (1994), 883-898. doi: 10.2307/2154747.

[17]

F. Dal'boJ.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis, Israel J. Math., 118 (2000), 109-124. doi: 10.1007/BF02803518.

[18]

U. Hamenstädt, Rank-one isometries of proper CAT(0)-spaces, Discrete Groups and Geometric Structures, Contemporary Mathematics,, American Mathematical Society, Providence, RI, 501 (2009), 43–59. doi: 10.1090/conm/501/09839.

[19]

E. Hopf, Ergodentheorie, Springer, 1937. doi: 10.1007/978-3-642-86630-2.

[20]

E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc., 77 (1971), 863-877. doi: 10.1090/S0002-9904-1971-12799-4.

[21]

V. A. Kaimanovich, Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. Reine Angew. Math., 455 (1994), 57-103. doi: 10.1515/crll.1994.455.57.

[22]

G. Knieper, On the asymptotic geometry of nonpositively curved manifolds, Geom. Funct. Anal., 7 (1997), 755-782. doi: 10.1007/s000390050025.

[23]

G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math. (2), 148 (1998), 291-314. doi: 10.2307/120995.

[24]

U. Krengel, Darstellungssätze für Strömungen und Halbströmungen. Ⅰ, Mathematische Annalen, 176 (1968), 181-190. doi: 10.1007/BF02052824.

[25]

U. Krengel, Ergodic Theorems, vol. 6 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1985, With a supplement by Antoine Brunel. doi: 10.1515/9783110844641.

[26]

G. Link, Asymptotic geometry and growth of conjugacy classes of nonpositively curved manifolds, Ann. Global Anal. Geom., 31 (2007), 37-57. doi: 10.1007/s10455-006-9016-x.

[27]

G. Link, Asymptotic geometry in products of Hadamard spaces with rank one isometries, Geometry and Topology, 14 (2010), 1063-1094. doi: 10.2140/gt.2010.14.1063.

[28]

G. LinkM. Peigné and J.-C. Picaud, Sur les surfaces non-compactes de rang un, Enseign. Math. (2), 52 (2006), 3-36.

[29]

G. Link and J.-C. Picaud, Ergodic geometry for non-elementary rank one manifolds, Discrete and Continuous Dyn. Syst. A, no. 11, 36 (2016), 6257–6284. doi: 10.3934/dcds.2016072.

[30]

P. J. Nicholls, The Ergodic Theory of Discrete Groups, vol. 143 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1989. doi: 10.1017/CBO9780511600678.

[31]

J.-P. Otal and M. Peigné, Principe variationnel et groupes kleiniens, Duke Math. J., 125 (2004), 15-44. doi: 10.1215/S0012-7094-04-12512-6.

[32]

S. J. Patterson, The limit set of a Fuchsian group, Acta Math., 136 (1976), 241-273. doi: 10.1007/BF02392046.

[33]

M. Peigné, Autour de l'exposant de Poincaré d'un groupe kleinien, Géométrie ergodique, Monogr. Enseign. Math., Enseignement Math., Geneva, 43 (2013), 25–59.

[34]

R. Ricks, Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank one spaces, PhD Thesis, University of Michigan, 2015.

[35]

R. Ricks, Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank one CAT(0) spaces, Ergodic Theory Dynam. Systems, no. 3, 37 (2017), 939–970. doi: 10.1017/etds.2015.78.

[36]

T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N. S. ), 95 (2003), ⅵ+96pp.

[37]

T. Roblin, Un théorème de Fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative, Israel J. Math., 147 (2005), 333-357. doi: 10.1007/BF02785371.

[38]

V. Schroeder, Existence of immersed tori in manifolds of nonpositive curvature, J. Reine Angew. Math., 390 (1988), 32-46. doi: 10.1515/crll.1988.390.32.

[39]

V. Schroeder, Structure of flat subspaces in low-dimensional manifolds of nonpositive curvature, Manuscripta Math., 64 (1989), 77-105. doi: 10.1007/BF01182086.

[40]

V. Schroeder, Codimension one tori in manifolds of nonpositive curvature, Geom. Dedicata, 33 (1990), 251-263. doi: 10.1007/BF00181332.

[41]

D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171-202.

[42]

M. E. Taylor, Measure Theory and Integration, vol. 76 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/gsm/076.

[43]

M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publishing Co., New York, 1975, Reprinting of the 1959 original.

[44]

C. Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc., 348 (1996), 4965-5005. doi: 10.1090/S0002-9947-96-01614-5.

show all references

References:
[1]

J. Aaronson and M. Denker, The Poincaré series of $\mathbb C\setminus \mathbb Z$, Ergodic Theory Dynam. Systems, 19 (1999), 1-20. doi: 10.1017/S0143385799126592.

[2]

J. Aaronson and D. Sullivan, Rational ergodicity of geodesic flows, Ergodic Theory Dynam. Systems, 4 (1984), 165-178. doi: 10.1017/S0143385700002364.

[3]

W. Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982), 131-144. doi: 10.1007/BF01456836.

[4]

W. Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. (2), 122 (1985), 597-609. doi: 10.2307/1971331.

[5]

W. Ballmann, Lectures on Spaces of Nonpositive Curvature, vol. 25 of DMV Seminar, Birkhäuser Verlag, Basel, 1995, With an appendix by Misha Brin. doi: 10.1007/978-3-0348-9240-7.

[6]

W. Ballmann and M. Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math., 82 (1995), 169-209.

[7]

W. BallmannM. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. Ⅰ, Ann. of Math. (2), 122 (1985), 171-203. doi: 10.2307/1971373.

[8]

W. Ballmann, M. Gromov and V. Schroeder, Manifolds of Nonpositive Curvature, vol. 61 of Progress in Mathematics, Birkhäuser Boston Inc., Boston, MA, 1985. doi: 10.1007/978-1-4684-9159-3.

[9]

V. Bangert and V. Schroeder, Existence of flat tori in analytic manifolds of nonpositive curvature, Ann. Sci. École Norm. Sup. (4), 24 (1991), 605-634. doi: 10.24033/asens.1638.

[10]

M. Bourdon, Structure conforme au bord et flot géodésique d'un $\rm CAT(-1)$-espace, Enseign. Math. (2), 41 (1995), 63-102.

[11]

M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-12494-9.

[12]

D. Burago, Y. Burago and S. Ivanov, A course in Metric Geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/033.

[13]

K. Burns, Hyperbolic behaviour of geodesic flows on manifolds with no focal points, Ergodic Theory Dynam. Systems, 3 (1983), 1-12. doi: 10.1017/S0143385700001796.

[14]

K. Burns and R. Spatzier, Manifolds of nonpositive curvature and their buildings, Inst. Hautes Etudes Sci. Publ. Math., 65 (1987), 35-59.

[15]

P-E. Caprace and K. Fujiwara, Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal., 19 (2010), 1296-1319. doi: 10.1007/s00039-009-0042-2.

[16]

M. Coornaert and A. Papadopoulos, Une dichotomie de Hopf pour les flots géodésiques associés aux groupes discrets d'isométries des arbres, Trans. Amer. Math. Soc., 343 (1994), 883-898. doi: 10.2307/2154747.

[17]

F. Dal'boJ.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis, Israel J. Math., 118 (2000), 109-124. doi: 10.1007/BF02803518.

[18]

U. Hamenstädt, Rank-one isometries of proper CAT(0)-spaces, Discrete Groups and Geometric Structures, Contemporary Mathematics,, American Mathematical Society, Providence, RI, 501 (2009), 43–59. doi: 10.1090/conm/501/09839.

[19]

E. Hopf, Ergodentheorie, Springer, 1937. doi: 10.1007/978-3-642-86630-2.

[20]

E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc., 77 (1971), 863-877. doi: 10.1090/S0002-9904-1971-12799-4.

[21]

V. A. Kaimanovich, Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. Reine Angew. Math., 455 (1994), 57-103. doi: 10.1515/crll.1994.455.57.

[22]

G. Knieper, On the asymptotic geometry of nonpositively curved manifolds, Geom. Funct. Anal., 7 (1997), 755-782. doi: 10.1007/s000390050025.

[23]

G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math. (2), 148 (1998), 291-314. doi: 10.2307/120995.

[24]

U. Krengel, Darstellungssätze für Strömungen und Halbströmungen. Ⅰ, Mathematische Annalen, 176 (1968), 181-190. doi: 10.1007/BF02052824.

[25]

U. Krengel, Ergodic Theorems, vol. 6 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1985, With a supplement by Antoine Brunel. doi: 10.1515/9783110844641.

[26]

G. Link, Asymptotic geometry and growth of conjugacy classes of nonpositively curved manifolds, Ann. Global Anal. Geom., 31 (2007), 37-57. doi: 10.1007/s10455-006-9016-x.

[27]

G. Link, Asymptotic geometry in products of Hadamard spaces with rank one isometries, Geometry and Topology, 14 (2010), 1063-1094. doi: 10.2140/gt.2010.14.1063.

[28]

G. LinkM. Peigné and J.-C. Picaud, Sur les surfaces non-compactes de rang un, Enseign. Math. (2), 52 (2006), 3-36.

[29]

G. Link and J.-C. Picaud, Ergodic geometry for non-elementary rank one manifolds, Discrete and Continuous Dyn. Syst. A, no. 11, 36 (2016), 6257–6284. doi: 10.3934/dcds.2016072.

[30]

P. J. Nicholls, The Ergodic Theory of Discrete Groups, vol. 143 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1989. doi: 10.1017/CBO9780511600678.

[31]

J.-P. Otal and M. Peigné, Principe variationnel et groupes kleiniens, Duke Math. J., 125 (2004), 15-44. doi: 10.1215/S0012-7094-04-12512-6.

[32]

S. J. Patterson, The limit set of a Fuchsian group, Acta Math., 136 (1976), 241-273. doi: 10.1007/BF02392046.

[33]

M. Peigné, Autour de l'exposant de Poincaré d'un groupe kleinien, Géométrie ergodique, Monogr. Enseign. Math., Enseignement Math., Geneva, 43 (2013), 25–59.

[34]

R. Ricks, Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank one spaces, PhD Thesis, University of Michigan, 2015.

[35]

R. Ricks, Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank one CAT(0) spaces, Ergodic Theory Dynam. Systems, no. 3, 37 (2017), 939–970. doi: 10.1017/etds.2015.78.

[36]

T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N. S. ), 95 (2003), ⅵ+96pp.

[37]

T. Roblin, Un théorème de Fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative, Israel J. Math., 147 (2005), 333-357. doi: 10.1007/BF02785371.

[38]

V. Schroeder, Existence of immersed tori in manifolds of nonpositive curvature, J. Reine Angew. Math., 390 (1988), 32-46. doi: 10.1515/crll.1988.390.32.

[39]

V. Schroeder, Structure of flat subspaces in low-dimensional manifolds of nonpositive curvature, Manuscripta Math., 64 (1989), 77-105. doi: 10.1007/BF01182086.

[40]

V. Schroeder, Codimension one tori in manifolds of nonpositive curvature, Geom. Dedicata, 33 (1990), 251-263. doi: 10.1007/BF00181332.

[41]

D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171-202.

[42]

M. E. Taylor, Measure Theory and Integration, vol. 76 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/gsm/076.

[43]

M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publishing Co., New York, 1975, Reprinting of the 1959 original.

[44]

C. Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc., 348 (1996), 4965-5005. doi: 10.1090/S0002-9947-96-01614-5.

[1]

Richard Sharp. Conformal Markov systems, Patterson-Sullivan measure on limit sets and spectral triples. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2711-2727. doi: 10.3934/dcds.2016.36.2711

[2]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[3]

Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841

[4]

Ciprian Preda. Discrete-time theorems for the dichotomy of one-parameter semigroups. Communications on Pure & Applied Analysis, 2008, 7 (2) : 457-463. doi: 10.3934/cpaa.2008.7.457

[5]

Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773

[6]

Raz Kupferman, Asaf Shachar. On strain measures and the geodesic distance to $SO_n$ in the general linear group. Journal of Geometric Mechanics, 2016, 8 (4) : 437-460. doi: 10.3934/jgm.2016015

[7]

Gabriele Link, Jean-Claude Picaud. Ergodic geometry for non-elementary rank one manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6257-6284. doi: 10.3934/dcds.2016072

[8]

Xianchao Xiu, Lingchen Kong. Rank-one and sparse matrix decomposition for dynamic MRI. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 127-134. doi: 10.3934/naco.2015.5.127

[9]

Azmy S. Ackleh, Ben G. Fitzpatrick, Horst R. Thieme. Rate distributions and survival of the fittest: a formulation on the space of measures. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 917-928. doi: 10.3934/dcdsb.2005.5.917

[10]

Mrinal Kanti Roychowdhury. Quantization coefficients for ergodic measures on infinite symbolic space. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2829-2846. doi: 10.3934/dcds.2014.34.2829

[11]

Gabriel Fuhrmann, Jing Wang. Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5747-5761. doi: 10.3934/dcds.2017249

[12]

Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191

[13]

William Ott, Qiudong Wang. Periodic attractors versus nonuniform expansion in singular limits of families of rank one maps. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1035-1054. doi: 10.3934/dcds.2010.26.1035

[14]

Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control & Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007

[15]

Kathryn Dabbs, Michael Kelly, Han Li. Effective equidistribution of translates of maximal horospherical measures in the space of lattices. Journal of Modern Dynamics, 2016, 10: 229-254. doi: 10.3934/jmd.2016.10.229

[16]

Mehmet Onur Fen, Marat Akhmet. Impulsive SICNNs with chaotic postsynaptic currents. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1119-1148. doi: 10.3934/dcdsb.2016.21.1119

[17]

Rogério Martins. One-dimensional attractor for a dissipative system with a cylindrical phase space. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 533-547. doi: 10.3934/dcds.2006.14.533

[18]

Luciano Pandolfi. Riesz systems and moment method in the study of viscoelasticity in one space dimension. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1487-1510. doi: 10.3934/dcdsb.2010.14.1487

[19]

Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265

[20]

Igor Kukavica. On Fourier parametrization of global attractors for equations in one space dimension. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 553-560. doi: 10.3934/dcds.2005.13.553

2017 Impact Factor: 1.179

Article outline

[Back to Top]