November 2018, 38(11): 5443-5460. doi: 10.3934/dcds.2018240

Periodic solutions for the N-vortex problem via a superposition principle

Mathematisches Institut, Universität Gießen, Arndstr. 2, 35392 Gießen, Germany

Received  September 2017 Revised  April 2018 Published  August 2018

We examine the
$N$
-vortex problem on general domains
$Ω\subset\mathbb{R}^2$
concerning the existence of nonstationary collision-free periodic solutions. The problem in question is a first order Hamiltonian system of the form
$Γ_k\dot{z}_k = J\nabla_{z_k}H(z_1,...,z_N),\ \ \ \ k = 1,...,N,$
where
$Γ_k∈\mathbb{R}\setminus\{0\}$
is the strength of the
$k$
th vortex at position
$z_k(t)∈Ω$
,
$J∈\mathbb{R}^{2× 2}$
is the standard symplectic matrix and
$H(z_1,...,z_N) = -\frac{1}{2π}\sum\limits_{\underset{k≠ j}{k,j = 1}}^NΓ_jΓ_k\log|z_k-z_j|-\sum\limits_{k,j = 1}^NΓ_jΓ_k g(z_k,z_j)$
with some regular and symmetric, but in general not explicitely known function
$g:Ω×Ω \to \mathbb{R}$
. The investigation relies on the idea to superpose a stationary solution of a system of less than
$N$
vortices and several clusters of vortices that are close to rigidly rotating configurations of the whole-plane system. We establish general conditions on both, the stationary solution and the configurations, under which multiple
$T$
-periodic solutions are shown to exist for every
$T>0$
small enough. The crucial condition holds in generic bounded domains and is explicitly verified for an example in the unit disc
$Ω = B_1(0)$
. In particular we therefore obtain various examples of periodic solutions in
$B_1(0)$
that are not rigidly rotating configurations.
Citation: Björn Gebhard. Periodic solutions for the N-vortex problem via a superposition principle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5443-5460. doi: 10.3934/dcds.2018240
References:
[1]

H. Aref, Relative equilibria of point vortices and the fundamental theorem of algebra, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 2168-2184. doi: 10.1098/rspa.2010.0580.

[2]

H. ArefP. K. NewtonM. A. StremlerT. Tokieda and D. L. Vainchtein, Vortex crystals, Adv. Appl. Mech., 39 (2003), 1-79. doi: 10.1016/S0065-2156(02)39001-X.

[3]

T. Bartsch, A generalization of the Weinstein-Moser theorems on periodic orbits of a Hamiltonian system near an equilibrium, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 691-718. doi: 10.1016/S0294-1449(97)80130-8.

[4]

T. Bartsch and Q. Dai, Periodic solutions of the N-vortex Hamiltonian system in planar domains, J. Diff. Equ., 260 (2016), 2275-2295. doi: 10.1016/j.jde.2015.10.002.

[5]

T. BartschQ. Dai and B. Gebhard, Periodic solutions of N-vortex type Hamiltonian systems near the domain boundary, SIAM J. Appl. Math., 78 (2018), 977-995. doi: 10.1137/16M1107085.

[6]

T. Bartsch and B. Gebhard, Global continua of periodic solutions of singular first-order Hamiltonian systems of N-vortex type, Math. Ann., 369 (2017), 627-651. doi: 10.1007/s00208-016-1505-z.

[7]

T. Bartsch, A. M. Micheletti and A. Pistoia, The Morse property for functions of Kirchhoff-Routh path type, to appear: Discrete Contin. Dyn. Syst. Ser. S.

[8]

T. Bartsch and A. Pistoia, Critical points of the N-vortex Hamiltonian in bounded planar domains and steady state solutions of the incompressible Euler equations, SIAM J. Appl. Math., 75 (2015), 726-744. doi: 10.1137/140981253.

[9]

T. BartschA. Pistoia and T. Weth, N-vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-poisson and the Lane-Emden-Fowler equations, Comm. Math. Phys., 297 (2010), 653-686. doi: 10.1007/s00220-010-1053-4.

[10]

T. Bartsch and M. Sacchet, Periodic solutions with prescribed minimal period of vortex type problems in domains, Nonlinearity, 31 (2018), 2156-2172. doi: 10.1088/1361-6544/aaaf2d.

[11]

D. CaoZ. Liu and J. Wei, Regularization of point vortices pairs for the Euler equation in dimension two, Arch. Rat. Mech. Anal., 212 (2014), 179-217. doi: 10.1007/s00205-013-0692-y.

[12]

O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik-Schnirelmann Category, American Mathematical Society, Providence Rhode Island, 2003. doi: 10.1090/surv/103.

[13]

M. del PinoM. Kowalczyk and M. Musso, Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations, 24 (2005), 47-81. doi: 10.1007/s00526-004-0314-5.

[14]

P. EspositoM. Grossi and A. Pistoia, On the existence of blowing-up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 227-257. doi: 10.1016/j.anihpc.2004.12.001.

[15]

M. Flucher, Variational Problems with Concentration, Birkhäuser, Basel Boston Berlin, 1999. doi: 10.1007/978-3-0348-8687-1.

[16]

M. Gelantalis and P. Sternberg, Rotating 2N-vortex solutions to the Gross-Pitaevskii equation on $ S^2$, J. Math. Phys., 53 (2012), 083701, 24pp. doi: 10.1063/1.4739748.

[17]

R. L. Jerrard and H. M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech. Anal., 142 (1998), 99-125. doi: 10.1007/s002050050085.

[18]

K. Khanin, Quasi-periodic motions of vortex systems, Phys. D, 4 (1982), 261-269. doi: 10.1016/0167-2789(82)90067-7.

[19]

G. R. Kirchhoff, Vorlesungen Über Mathematische Physik, Teubner, Leipzig, 1876.

[20]

C. Kuhl, Symmetric equilibria for the N-vortex problem, J. Fixed Point Theory Appl., 17 (2015), 597-624. doi: 10.1007/s11784-015-0242-3.

[21]

C. Kuhl, Equilibria for the N-vortex-problem in a general bounded domain, J. Math. Anal. Appl., 433 (2016), 1531-1560. doi: 10.1016/j.jmaa.2015.08.055.

[22]

M. KurzkeC. MelcherR. Moser and D. Spirn, Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation, Arch. Rat. Mech. Anal., 199 (2011), 843-888. doi: 10.1007/s00205-010-0356-0.

[23]

C. C. Lin, On the motion of vortices in two dimensions i. Existence of the Kirchhoff-Routh function, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 570-575.

[24]

C. C. Lin, On the motion of vortices in two dimensions ii. Some further investigations on the Kirchhoff-Routh function, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 575-577.

[25]

C. Marchioro and M. Pulvirenti, Vortex Methods in Two-Dimensional Fluid Dynamics, Springer, Berlin Heidelberg, 1984.

[26]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Springer, New York, 1994. doi: 10.1007/978-1-4612-4284-0.

[27]

J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math., 29 (1976), 727-747. doi: 10.1002/cpa.3160290613.

[28]

P. K. Newton, The N-Vortex Problem, Springer, New York, 2001. doi: 10.1007/978-1-4684-9290-3.

[29]

G. E. Roberts, Stability of relative equilibria in the planar N-vortex problem, SIAM J. Appl. Dyn. Sys., 12 (2013), 1114-1134. doi: 10.1137/130907434.

[30]

E. J. Routh, Some applications of conjugate functions, Proc. London Math. Soc., 12 (1880), 73-89. doi: 10.1112/plms/s1-12.1.73.

[31]

P. G. Saffman, Vortex Dynamics, Cambridge University Press, 1992.

[32]

R. Venkatraman, Periodic orbits of Gross-Pitaevskii in the disc with vortices following point vortex flow, Calc. Var. Partial Differential Equations, 56 (2017), Art. 64, 35 pp. doi: 10.1007/s00526-017-1168-y.

[33]

A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Inventiones mathematicae, 20 (1973), 47-57. doi: 10.1007/BF01405263.

show all references

References:
[1]

H. Aref, Relative equilibria of point vortices and the fundamental theorem of algebra, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 2168-2184. doi: 10.1098/rspa.2010.0580.

[2]

H. ArefP. K. NewtonM. A. StremlerT. Tokieda and D. L. Vainchtein, Vortex crystals, Adv. Appl. Mech., 39 (2003), 1-79. doi: 10.1016/S0065-2156(02)39001-X.

[3]

T. Bartsch, A generalization of the Weinstein-Moser theorems on periodic orbits of a Hamiltonian system near an equilibrium, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 691-718. doi: 10.1016/S0294-1449(97)80130-8.

[4]

T. Bartsch and Q. Dai, Periodic solutions of the N-vortex Hamiltonian system in planar domains, J. Diff. Equ., 260 (2016), 2275-2295. doi: 10.1016/j.jde.2015.10.002.

[5]

T. BartschQ. Dai and B. Gebhard, Periodic solutions of N-vortex type Hamiltonian systems near the domain boundary, SIAM J. Appl. Math., 78 (2018), 977-995. doi: 10.1137/16M1107085.

[6]

T. Bartsch and B. Gebhard, Global continua of periodic solutions of singular first-order Hamiltonian systems of N-vortex type, Math. Ann., 369 (2017), 627-651. doi: 10.1007/s00208-016-1505-z.

[7]

T. Bartsch, A. M. Micheletti and A. Pistoia, The Morse property for functions of Kirchhoff-Routh path type, to appear: Discrete Contin. Dyn. Syst. Ser. S.

[8]

T. Bartsch and A. Pistoia, Critical points of the N-vortex Hamiltonian in bounded planar domains and steady state solutions of the incompressible Euler equations, SIAM J. Appl. Math., 75 (2015), 726-744. doi: 10.1137/140981253.

[9]

T. BartschA. Pistoia and T. Weth, N-vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-poisson and the Lane-Emden-Fowler equations, Comm. Math. Phys., 297 (2010), 653-686. doi: 10.1007/s00220-010-1053-4.

[10]

T. Bartsch and M. Sacchet, Periodic solutions with prescribed minimal period of vortex type problems in domains, Nonlinearity, 31 (2018), 2156-2172. doi: 10.1088/1361-6544/aaaf2d.

[11]

D. CaoZ. Liu and J. Wei, Regularization of point vortices pairs for the Euler equation in dimension two, Arch. Rat. Mech. Anal., 212 (2014), 179-217. doi: 10.1007/s00205-013-0692-y.

[12]

O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik-Schnirelmann Category, American Mathematical Society, Providence Rhode Island, 2003. doi: 10.1090/surv/103.

[13]

M. del PinoM. Kowalczyk and M. Musso, Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations, 24 (2005), 47-81. doi: 10.1007/s00526-004-0314-5.

[14]

P. EspositoM. Grossi and A. Pistoia, On the existence of blowing-up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 227-257. doi: 10.1016/j.anihpc.2004.12.001.

[15]

M. Flucher, Variational Problems with Concentration, Birkhäuser, Basel Boston Berlin, 1999. doi: 10.1007/978-3-0348-8687-1.

[16]

M. Gelantalis and P. Sternberg, Rotating 2N-vortex solutions to the Gross-Pitaevskii equation on $ S^2$, J. Math. Phys., 53 (2012), 083701, 24pp. doi: 10.1063/1.4739748.

[17]

R. L. Jerrard and H. M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech. Anal., 142 (1998), 99-125. doi: 10.1007/s002050050085.

[18]

K. Khanin, Quasi-periodic motions of vortex systems, Phys. D, 4 (1982), 261-269. doi: 10.1016/0167-2789(82)90067-7.

[19]

G. R. Kirchhoff, Vorlesungen Über Mathematische Physik, Teubner, Leipzig, 1876.

[20]

C. Kuhl, Symmetric equilibria for the N-vortex problem, J. Fixed Point Theory Appl., 17 (2015), 597-624. doi: 10.1007/s11784-015-0242-3.

[21]

C. Kuhl, Equilibria for the N-vortex-problem in a general bounded domain, J. Math. Anal. Appl., 433 (2016), 1531-1560. doi: 10.1016/j.jmaa.2015.08.055.

[22]

M. KurzkeC. MelcherR. Moser and D. Spirn, Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation, Arch. Rat. Mech. Anal., 199 (2011), 843-888. doi: 10.1007/s00205-010-0356-0.

[23]

C. C. Lin, On the motion of vortices in two dimensions i. Existence of the Kirchhoff-Routh function, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 570-575.

[24]

C. C. Lin, On the motion of vortices in two dimensions ii. Some further investigations on the Kirchhoff-Routh function, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 575-577.

[25]

C. Marchioro and M. Pulvirenti, Vortex Methods in Two-Dimensional Fluid Dynamics, Springer, Berlin Heidelberg, 1984.

[26]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Springer, New York, 1994. doi: 10.1007/978-1-4612-4284-0.

[27]

J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math., 29 (1976), 727-747. doi: 10.1002/cpa.3160290613.

[28]

P. K. Newton, The N-Vortex Problem, Springer, New York, 2001. doi: 10.1007/978-1-4684-9290-3.

[29]

G. E. Roberts, Stability of relative equilibria in the planar N-vortex problem, SIAM J. Appl. Dyn. Sys., 12 (2013), 1114-1134. doi: 10.1137/130907434.

[30]

E. J. Routh, Some applications of conjugate functions, Proc. London Math. Soc., 12 (1880), 73-89. doi: 10.1112/plms/s1-12.1.73.

[31]

P. G. Saffman, Vortex Dynamics, Cambridge University Press, 1992.

[32]

R. Venkatraman, Periodic orbits of Gross-Pitaevskii in the disc with vortices following point vortex flow, Calc. Var. Partial Differential Equations, 56 (2017), Art. 64, 35 pp. doi: 10.1007/s00526-017-1168-y.

[33]

A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Inventiones mathematicae, 20 (1973), 47-57. doi: 10.1007/BF01405263.

Figure 1.  This diagram illustrates the superposition idea. The $2$-vortex problem in the unit disc admits a stationary solution with $\Gamma^1 = -\Gamma^2$, cf. Example 1.2, say $\Gamma^1 = -2$ (blue star), $\Gamma^2 = 2$ (red star). As rigidly rotating configurations on $\mathbb{R}^2$ we take here for simplicity two identical vortices for $\Gamma^1$ and $\Gamma^2$, i.e. $\Gamma^1_1 = \Gamma^1_2 = -1$ rotate on the blue circle in clockwise direction and $\Gamma^2_1 = \Gamma^2_2 = 1$ rotate on the red circle in counterclockwise direction. The result on the right-hand side is a periodic solution of the $4$-vortex system in the disc with vorticities $\Gamma^1_1,\Gamma^1_2,\Gamma^2_1,\Gamma^2_2$, where each pair of vortices moves along a deformed circle in the same orientation as before. The shown trajectory is the actual numerically computed trajectory of the $4$-vortex problem. Suitable initial conditions can in this case be found due to symmetry considerations
[1]

J. R. Ward. Periodic solutions of first order systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 381-389. doi: 10.3934/dcds.2013.33.381

[2]

Chungen Liu, Xiaofei Zhang. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1559-1574. doi: 10.3934/dcds.2017064

[3]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[4]

Luis Vega. The dynamics of vortex filaments with corners. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1581-1601. doi: 10.3934/cpaa.2015.14.1581

[5]

Xavier Perrot, Xavier Carton. Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 971-995. doi: 10.3934/dcdsb.2009.11.971

[6]

Mitsuru Shibayama. Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2705-2715. doi: 10.3934/dcds.2017116

[7]

Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-9. doi: 10.3934/dcdsb.2018222

[8]

Chjan C. Lim, Ka Kit Tung. Introduction: Recent advances in vortex dynamics and turbulence. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : i-i. doi: 10.3934/dcdsb.2005.5.1i

[9]

Xiangjin Xu. Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 643-654. doi: 10.3934/dcdsb.2003.3.643

[10]

Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353

[11]

Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065

[12]

Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic & Related Models, 2010, 3 (1) : 181-194. doi: 10.3934/krm.2010.3.181

[13]

Pedro J. Torres, R. Carretero-González, S. Middelkamp, P. Schmelcher, Dimitri J. Frantzeskakis, P.G. Kevrekidis. Vortex interaction dynamics in trapped Bose-Einstein condensates. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1589-1615. doi: 10.3934/cpaa.2011.10.1589

[14]

Zhiguo Xu, Weizhu Bao, Shaoyun Shi. Quantized vortex dynamics and interaction patterns in superconductivity based on the reduced dynamical law. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2265-2297. doi: 10.3934/dcdsb.2018096

[15]

Xingyong Zhang, Xianhua Tang. Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems. Communications on Pure & Applied Analysis, 2014, 13 (1) : 75-95. doi: 10.3934/cpaa.2014.13.75

[16]

Norimichi Hirano, Zhi-Qiang Wang. Subharmonic solutions for second order Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 467-474. doi: 10.3934/dcds.1998.4.467

[17]

Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069

[18]

Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059

[19]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[20]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (59)
  • HTML views (59)
  • Cited by (0)

Other articles
by authors

[Back to Top]