November 2018, 38(11): 5389-5413. doi: 10.3934/dcds.2018238

On the concentration of semiclassical states for nonlinear Dirac equations

School of Mathematics and Statistics, Central South University, Changsha 410083, Hunan, China

* Corresponding author: Xu Zhang

Received  July 2017 Revised  December 2017 Published  August 2018

Fund Project: The first author is supported by the China Postdoctoral Science Foundation 2017M611160

In this paper, we study the following nonlinear Dirac equation
$\begin{equation*}-i\varepsilonα·\nabla w+aβ w+V(x)w = g(|w|)w, \ x∈ \mathbb{R}^3, \ {\rm for}\ w∈ H^1(\mathbb R^3, \mathbb C^4), \end{equation*}$
where
$a > 0$
is a constant,
$α = (α_1, α_2, α_3)$
,
$α_1, α_2, α_3$
and
$β$
are
$4×4$
Pauli-Dirac matrices. Under the assumptions that
$V$
and
$g$
are continuous but are not necessarily of class
$C^1$
, when
$g$
is super-linear growth at infinity we obtain the existence of semiclassical solutions, which converge to the least energy solutions of its limit problem as
$\varepsilon \to 0$
.
Citation: Xu Zhang. On the concentration of semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5389-5413. doi: 10.3934/dcds.2018238
References:
[1]

A. AmbrosettiA. Malchiodi and W. M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres Ⅰ, Comm. Math. Phys., 235 (2003), 427-466. doi: 10.1007/s00220-003-0811-y.

[2]

T. Bartsch and Y. H. Ding, Solutions of nonlinear Dirac equations, J. Differential Equations, 226 (2006), 210-249. doi: 10.1016/j.jde.2005.08.014.

[3]

J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 165 (2002), 295-316. doi: 10.1007/s00205-002-0225-6.

[4]

J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations. Ⅱ, Calc. Var. Partial Differential Equations, 18 (2003), 207-219. doi: 10.1007/s00526-002-0191-8.

[5]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3, Springer, Berlin, 1990.

[6]

P. D'AveniaA. Pomponio and D. Ruiz, Semiclassical states for the onlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633. doi: 10.1016/j.jfa.2012.03.009.

[7]

M. Del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149 (1997), 245-265. doi: 10.1006/jfan.1996.3085.

[8]

M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Lináire, 15 (1998), 127-149. doi: 10.1016/S0294-1449(97)89296-7.

[9]

M. Del PinoM. Kowalczyk and J. C. Wei, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., 60 (2007), 113-146. doi: 10.1002/cpa.20135.

[10]

Y. H. Ding, Variational Methods for Strongly Indefinite Problems, Interdiscip. Math. Sci., vol. 7. World Scientific Publ., Singapore, 2007. doi: 10.1142/9789812709639.

[11]

Y. H. Ding, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010), 1015-1034. doi: 10.1016/j.jde.2010.03.022.

[12]

Y. H. DingC. Lee and B. Ruf, On semiclassical states of a nonlinear Dirac equation, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 765-790. doi: 10.1017/S0308210511001752.

[13]

Y. H. Ding and X. Y. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012), 4962-4987. doi: 10.1016/j.jde.2012.01.023.

[14]

Y. H. Ding and B. Ruf, Solutions of a nonlinear Dirac equation with external fields, Arch. Ration. Mech. Anal., 190 (2008), 57-82. doi: 10.1007/s00205-008-0163-z.

[15]

Y. H. Ding and B. Ruf, Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012), 3755-3785. doi: 10.1137/110850670.

[16]

Y. H. Ding and J. C. Wei, Stationary states of nonlinear Dirac equations with general potentials, J. Math. Phys., 20 (2008), 1007-1032. doi: 10.1142/S0129055X0800350X.

[17]

Y. H. Ding, J. C. Wei and T. Xu, Existence and concentration of semi-classical solutions for a nonlinear Maxwell-Dirac system, J. Math. Phys., 54 (2013), 061505, 33pp. doi: 10.1063/1.4811541.

[18]

Y. H. Ding and T. Xu, Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Rational Mech. Anal., 216 (2015), 415-447. doi: 10.1007/s00205-014-0811-4.

[19]

M.J. EstebanM. Lewin and E. Séré, Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc. (N.S.), 45 (2008), 535-593. doi: 10.1090/S0273-0979-08-01212-3.

[20]

M. J. Esteban and E. Séré, Stationary states of the nonlinear Dirac equation: A variational approach, Commun. Math. Phys., 171 (1995), 323-350. doi: 10.1007/BF02099273.

[21]

G. M. Figueiredo and M. T. O. Pimenta, Existence of ground state solutions to Dirac equations with vanishing potentials at infinity, J. Differential Equations, 262 (2017), 486-505. doi: 10.1016/j.jde.2016.09.034.

[22]

A. Floer and A. Weistein, Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408. doi: 10.1016/0022-1236(86)90096-0.

[23]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg New York, 1997.

[24]

L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations, 21 (2004), 287-318. doi: 10.1007/s00526-003-0261-6.

[25]

X. Kang and J. C. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differ. Equ., 5 (2000), 899-928.

[26]

Y. Y. Li, On a singularly perturbed elliptic equation, Adv. Diff. Equ., 2 (1997), 955-980.

[27]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, parts 1 and 2, Ann. Inst. H. Poincaré Anual. Non Linéair, 1 (1984), 109-145,223-283. doi: 10.1016/S0294-1449(16)30422-X.

[28]

S. B. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9. doi: 10.1007/s00526-011-0447-2.

[29]

F. Merle, Existence of stationary states for nonlinear Dirac equations, J. Differential Equations, 74 (1988), 50-68. doi: 10.1016/0022-0396(88)90018-6.

[30]

Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$, Comm. Partial. Diff. Eq., 13 (1988), 1499-1519. doi: 10.1080/03605308808820585.

[31]

A. Pankov, On decay of solutions to nonlinear Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008), 2565-2570. doi: 10.1090/S0002-9939-08-09484-7.

[32]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-292. doi: 10.1007/BF00946631.

[33]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822. doi: 10.1016/j.jfa.2009.09.013.

[34]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244. doi: 10.1007/BF02096642.

[35]

X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655. doi: 10.1137/S0036141095290240.

[36]

J. Zhang, X. Tang and W. Zhang, Ground state solutions for nonperiodic Dirac equation with superquadratic nonlinearity, J. Math. Phys., 54 (2013), 101502, 10pp. doi: 10.1063/1.4824132.

[37]

J. ZhangX. Tang and W. Zhang, On ground state solutions for superlinear Dirac equation, Acta Math. Sci. Ser. B Engl. Ed., 34 (2014), 840-850. doi: 10.1016/S0252-9602(14)60054-0.

show all references

References:
[1]

A. AmbrosettiA. Malchiodi and W. M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres Ⅰ, Comm. Math. Phys., 235 (2003), 427-466. doi: 10.1007/s00220-003-0811-y.

[2]

T. Bartsch and Y. H. Ding, Solutions of nonlinear Dirac equations, J. Differential Equations, 226 (2006), 210-249. doi: 10.1016/j.jde.2005.08.014.

[3]

J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 165 (2002), 295-316. doi: 10.1007/s00205-002-0225-6.

[4]

J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations. Ⅱ, Calc. Var. Partial Differential Equations, 18 (2003), 207-219. doi: 10.1007/s00526-002-0191-8.

[5]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3, Springer, Berlin, 1990.

[6]

P. D'AveniaA. Pomponio and D. Ruiz, Semiclassical states for the onlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633. doi: 10.1016/j.jfa.2012.03.009.

[7]

M. Del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149 (1997), 245-265. doi: 10.1006/jfan.1996.3085.

[8]

M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Lináire, 15 (1998), 127-149. doi: 10.1016/S0294-1449(97)89296-7.

[9]

M. Del PinoM. Kowalczyk and J. C. Wei, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., 60 (2007), 113-146. doi: 10.1002/cpa.20135.

[10]

Y. H. Ding, Variational Methods for Strongly Indefinite Problems, Interdiscip. Math. Sci., vol. 7. World Scientific Publ., Singapore, 2007. doi: 10.1142/9789812709639.

[11]

Y. H. Ding, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010), 1015-1034. doi: 10.1016/j.jde.2010.03.022.

[12]

Y. H. DingC. Lee and B. Ruf, On semiclassical states of a nonlinear Dirac equation, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 765-790. doi: 10.1017/S0308210511001752.

[13]

Y. H. Ding and X. Y. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012), 4962-4987. doi: 10.1016/j.jde.2012.01.023.

[14]

Y. H. Ding and B. Ruf, Solutions of a nonlinear Dirac equation with external fields, Arch. Ration. Mech. Anal., 190 (2008), 57-82. doi: 10.1007/s00205-008-0163-z.

[15]

Y. H. Ding and B. Ruf, Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012), 3755-3785. doi: 10.1137/110850670.

[16]

Y. H. Ding and J. C. Wei, Stationary states of nonlinear Dirac equations with general potentials, J. Math. Phys., 20 (2008), 1007-1032. doi: 10.1142/S0129055X0800350X.

[17]

Y. H. Ding, J. C. Wei and T. Xu, Existence and concentration of semi-classical solutions for a nonlinear Maxwell-Dirac system, J. Math. Phys., 54 (2013), 061505, 33pp. doi: 10.1063/1.4811541.

[18]

Y. H. Ding and T. Xu, Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Rational Mech. Anal., 216 (2015), 415-447. doi: 10.1007/s00205-014-0811-4.

[19]

M.J. EstebanM. Lewin and E. Séré, Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc. (N.S.), 45 (2008), 535-593. doi: 10.1090/S0273-0979-08-01212-3.

[20]

M. J. Esteban and E. Séré, Stationary states of the nonlinear Dirac equation: A variational approach, Commun. Math. Phys., 171 (1995), 323-350. doi: 10.1007/BF02099273.

[21]

G. M. Figueiredo and M. T. O. Pimenta, Existence of ground state solutions to Dirac equations with vanishing potentials at infinity, J. Differential Equations, 262 (2017), 486-505. doi: 10.1016/j.jde.2016.09.034.

[22]

A. Floer and A. Weistein, Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408. doi: 10.1016/0022-1236(86)90096-0.

[23]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg New York, 1997.

[24]

L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations, 21 (2004), 287-318. doi: 10.1007/s00526-003-0261-6.

[25]

X. Kang and J. C. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differ. Equ., 5 (2000), 899-928.

[26]

Y. Y. Li, On a singularly perturbed elliptic equation, Adv. Diff. Equ., 2 (1997), 955-980.

[27]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, parts 1 and 2, Ann. Inst. H. Poincaré Anual. Non Linéair, 1 (1984), 109-145,223-283. doi: 10.1016/S0294-1449(16)30422-X.

[28]

S. B. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9. doi: 10.1007/s00526-011-0447-2.

[29]

F. Merle, Existence of stationary states for nonlinear Dirac equations, J. Differential Equations, 74 (1988), 50-68. doi: 10.1016/0022-0396(88)90018-6.

[30]

Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$, Comm. Partial. Diff. Eq., 13 (1988), 1499-1519. doi: 10.1080/03605308808820585.

[31]

A. Pankov, On decay of solutions to nonlinear Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008), 2565-2570. doi: 10.1090/S0002-9939-08-09484-7.

[32]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-292. doi: 10.1007/BF00946631.

[33]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822. doi: 10.1016/j.jfa.2009.09.013.

[34]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244. doi: 10.1007/BF02096642.

[35]

X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655. doi: 10.1137/S0036141095290240.

[36]

J. Zhang, X. Tang and W. Zhang, Ground state solutions for nonperiodic Dirac equation with superquadratic nonlinearity, J. Math. Phys., 54 (2013), 101502, 10pp. doi: 10.1063/1.4824132.

[37]

J. ZhangX. Tang and W. Zhang, On ground state solutions for superlinear Dirac equation, Acta Math. Sci. Ser. B Engl. Ed., 34 (2014), 840-850. doi: 10.1016/S0252-9602(14)60054-0.

[1]

Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599

[2]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[3]

A. Carati. On the existence of scattering solutions for the Abraham-Lorentz-Dirac equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 471-480. doi: 10.3934/dcdsb.2006.6.471

[4]

Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1685-1718. doi: 10.3934/cpaa.2014.13.1685

[5]

Yemin Chen. Analytic regularity for solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Kinetic & Related Models, 2010, 3 (4) : 645-667. doi: 10.3934/krm.2010.3.645

[6]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[7]

Zhongyuan Liu. Concentration of solutions for the fractional Nirenberg problem. Communications on Pure & Applied Analysis, 2016, 15 (2) : 563-576. doi: 10.3934/cpaa.2016.15.563

[8]

Shuangjie Peng, Jing Zhou. Concentration of solutions for a Paneitz type problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1055-1072. doi: 10.3934/dcds.2010.26.1055

[9]

Harald Friedrich. Semiclassical and large quantum number limits of the Schrödinger equation. Conference Publications, 2003, 2003 (Special) : 288-294. doi: 10.3934/proc.2003.2003.288

[10]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[11]

Linfeng Mei, Wei Dong, Changhe Guo. Concentration phenomenon in a nonlocal equation modeling phytoplankton growth. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 587-597. doi: 10.3934/dcdsb.2015.20.587

[12]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[13]

Shuji Machihara. One dimensional Dirac equation with quadratic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 277-290. doi: 10.3934/dcds.2005.13.277

[14]

Silvia Cingolani, Mnica Clapp, Simone Secchi. Intertwining semiclassical solutions to a Schrödinger-Newton system. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 891-908. doi: 10.3934/dcdss.2013.6.891

[15]

Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111

[16]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[17]

Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations & Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002

[18]

Noboru Okazawa, Kentarou Yoshii. Linear evolution equations with strongly measurable families and application to the Dirac equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 723-744. doi: 10.3934/dcdss.2011.4.723

[19]

Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263

[20]

Minbo Yang, Yanheng Ding. Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 429-449. doi: 10.3934/cpaa.2013.12.429

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (76)
  • HTML views (69)
  • Cited by (0)

Other articles
by authors

[Back to Top]