• Previous Article
    Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation
  • DCDS Home
  • This Issue
  • Next Article
    Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies
September 2018, 38(9): 4467-4482. doi: 10.3934/dcds.2018195

The Katok's entropy formula for amenable group actions

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

2. 

HLM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

3. 

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author: hxj@cqu.edu.cn

Received  September 2017 Revised  April 2018 Published  June 2018

Fund Project: The first and second authors are supported by NSF of China No.11471318 and No.11671057; The second author is also supported by NSF of China No.11688101; the third author is supported by NSF of China No.11671058

In this paper we generalize Katok's entropy formula to a large class of infinite countably amenable group actions.

Citation: Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195
References:
[1]

R. AdlerA. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319. doi: 10.1090/S0002-9947-1965-0175106-9.

[2]

L. Bowen and A. Nevo, Pointwise ergodic theorems beyond amenable groups, Ergodic Theory Dynam. Systems, 33 (2013), 777-820. doi: 10.1017/S0143385712000041.

[3]

R. Bowen, Entropy for group automorphisms and homogenous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X.

[4]

M. Choda, Entropy of automorphisms arising from dynamical systems through discrete groups with amenable actions, J. Funct. Anal., 217 (2004), 181-191. doi: 10.1016/j.jfa.2004.03.016.

[5]

C. Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc., 19 (2006), 737-758. doi: 10.1090/S0894-0347-06-00519-4.

[6]

E. Dinaburg, On the relations among various entropy characteristics of dynamical system, Math. of the USSR-Izvestija, 5 (1971), 337-378. doi: 10.1070/IM1971v005n02ABEH001050.

[7]

A. Dooley and V. Golodets, The spectrum of completely positive entropy actions of countable amenable groups, J. Funct. Anal., 196 (2002), 1-18. doi: 10.1006/jfan.2002.3966.

[8]

M. Hochman, Return times, recurrence densities and entropy for actions of some discrete amenable groups, J. Anal. Math., 100 (2006), 1-51. doi: 10.1007/BF02916754.

[9]

W. HuangX. Ye and G. Zhang, Local entropy theory for a countable discrete amenable group action, J. Funct. Anal., 261 (2011), 1028-1082. doi: 10.1016/j.jfa.2011.04.014.

[10]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173.

[11]

D. Kerr and H. Li, Ergodic Theory: Independence and Dichotomies, Springer, 2016. doi: 10.1007/978-3-319-49847-8.

[12]

B. Liang and K. Yan, Topological pressure for sub-additive potentials of amenable group actions, J. Funct. Anal., 262 (2012), 584-601. doi: 10.1016/j.jfa.2011.09.020.

[13]

E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259-295. doi: 10.1007/s002220100162.

[14]

D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48 (1987), 1-141. doi: 10.1007/BF02790325.

[15]

F. Pogorzelski, Almost-additive ergodic theorems for amenable groups, J. Funct. Anal., 265 (2013), 1615-1666. doi: 10.1016/j.jfa.2013.06.009.

[16]

D. Rudolph and B. Weiss, Entropy and mixing for amenable group actions, Ann. of Math., 151 (2000), 1119-1150. doi: 10.2307/121130.

show all references

References:
[1]

R. AdlerA. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319. doi: 10.1090/S0002-9947-1965-0175106-9.

[2]

L. Bowen and A. Nevo, Pointwise ergodic theorems beyond amenable groups, Ergodic Theory Dynam. Systems, 33 (2013), 777-820. doi: 10.1017/S0143385712000041.

[3]

R. Bowen, Entropy for group automorphisms and homogenous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X.

[4]

M. Choda, Entropy of automorphisms arising from dynamical systems through discrete groups with amenable actions, J. Funct. Anal., 217 (2004), 181-191. doi: 10.1016/j.jfa.2004.03.016.

[5]

C. Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc., 19 (2006), 737-758. doi: 10.1090/S0894-0347-06-00519-4.

[6]

E. Dinaburg, On the relations among various entropy characteristics of dynamical system, Math. of the USSR-Izvestija, 5 (1971), 337-378. doi: 10.1070/IM1971v005n02ABEH001050.

[7]

A. Dooley and V. Golodets, The spectrum of completely positive entropy actions of countable amenable groups, J. Funct. Anal., 196 (2002), 1-18. doi: 10.1006/jfan.2002.3966.

[8]

M. Hochman, Return times, recurrence densities and entropy for actions of some discrete amenable groups, J. Anal. Math., 100 (2006), 1-51. doi: 10.1007/BF02916754.

[9]

W. HuangX. Ye and G. Zhang, Local entropy theory for a countable discrete amenable group action, J. Funct. Anal., 261 (2011), 1028-1082. doi: 10.1016/j.jfa.2011.04.014.

[10]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173.

[11]

D. Kerr and H. Li, Ergodic Theory: Independence and Dichotomies, Springer, 2016. doi: 10.1007/978-3-319-49847-8.

[12]

B. Liang and K. Yan, Topological pressure for sub-additive potentials of amenable group actions, J. Funct. Anal., 262 (2012), 584-601. doi: 10.1016/j.jfa.2011.09.020.

[13]

E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259-295. doi: 10.1007/s002220100162.

[14]

D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48 (1987), 1-141. doi: 10.1007/BF02790325.

[15]

F. Pogorzelski, Almost-additive ergodic theorems for amenable groups, J. Funct. Anal., 265 (2013), 1615-1666. doi: 10.1016/j.jfa.2013.06.009.

[16]

D. Rudolph and B. Weiss, Entropy and mixing for amenable group actions, Ann. of Math., 151 (2000), 1119-1150. doi: 10.2307/121130.

[1]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[2]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[3]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[4]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[5]

Marcelo Sobottka. Topological quasi-group shifts. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 77-93. doi: 10.3934/dcds.2007.17.77

[6]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[7]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[8]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[9]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[10]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

[11]

Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068

[12]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[13]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[14]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

[15]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[16]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[17]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[18]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

[19]

Daniel J. Thompson. A criterion for topological entropy to decrease under normalised Ricci flow. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1243-1248. doi: 10.3934/dcds.2011.30.1243

[20]

Ming-Chia Li, Ming-Jiea Lyu. Positive topological entropy for multidimensional perturbations of topologically crossing homoclinicity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 243-252. doi: 10.3934/dcds.2011.30.243

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (57)
  • HTML views (60)
  • Cited by (0)

Other articles
by authors

[Back to Top]