September 2018, 38(9): 4421-4431. doi: 10.3934/dcds.2018192

The maximal entropy measure of Fatou boundaries

Mathematics Dept. CB #3250, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

* Corresponding author

Received  August 2017 Published  June 2018

Fund Project: The second author was partially supported by NSF grant DMS-1500817

We look at the maximal entropy measure (MME) of the boundaries of connected components of the Fatou set of a rational map of degree $≥ 2$. We show that if there are infinitely many Fatou components, and if either the Julia set is disconnected or the map is hyperbolic, then there can be at most one Fatou component whose boundary has positive MME measure. We also replace hyperbolicity by the more general hypothesis of geometric finiteness.

Citation: Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192
References:
[1]

A. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-4422-6.

[2]

C. CurryJ. MayerJ. Meddaugh and J. Rogers, Any counterexample to Makienko's conjecture is an indecomposable continuum, Ergodic Theory and Dynam. Sys., 29 (2009), 875-883. doi: 10.1017/S014338570800059X.

[3]

C. CurryJ. Mayer and E. Tymchatyn, Topology and measure of buried points in Julia sets, Fund. Math., 222 (2013), 1-17. doi: 10.4064/fm222-1-1.

[4]

A. FreireA. Lopes and R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat., 14 (1983), 45-62. doi: 10.1007/BF02584744.

[5]

J. Hawkins, Lebesgue ergodic rational maps in parameter space, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1423-1447. doi: 10.1142/S021812740300731X.

[6]

M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory and Dynam. Sys., 3 (1983), 351-385. doi: 10.1017/S0143385700002030.

[7]

C. McMullen, Complex Dynamics and Renormalization, Princeton Univ. Press, 1994.

[8]

J. Milnor, Dynamics in One Complex Variable (3rd ed.), Princeton Univ. Press, 2006.

[9]

S. Morosawa, On the residual Julia sets of rational functions, Ergodic Theory and Dynam. Sys., 17 (1997), 205-210. doi: 10.1017/S0143385797069848.

[10]

S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambridge Univ. Press, 2000.

[11]

J. Qiao, Topological complexity of Julia sets, Sci. China Ser. A, 40 (1997), 1158-1165. doi: 10.1007/BF02931834.

[12]

L. Tan and Y. Yin, Local connectivity of the Julia set for geometrically finite rational maps, Sci. China Ser. A, 39 (1996), 39-47.

show all references

References:
[1]

A. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-4422-6.

[2]

C. CurryJ. MayerJ. Meddaugh and J. Rogers, Any counterexample to Makienko's conjecture is an indecomposable continuum, Ergodic Theory and Dynam. Sys., 29 (2009), 875-883. doi: 10.1017/S014338570800059X.

[3]

C. CurryJ. Mayer and E. Tymchatyn, Topology and measure of buried points in Julia sets, Fund. Math., 222 (2013), 1-17. doi: 10.4064/fm222-1-1.

[4]

A. FreireA. Lopes and R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat., 14 (1983), 45-62. doi: 10.1007/BF02584744.

[5]

J. Hawkins, Lebesgue ergodic rational maps in parameter space, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1423-1447. doi: 10.1142/S021812740300731X.

[6]

M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory and Dynam. Sys., 3 (1983), 351-385. doi: 10.1017/S0143385700002030.

[7]

C. McMullen, Complex Dynamics and Renormalization, Princeton Univ. Press, 1994.

[8]

J. Milnor, Dynamics in One Complex Variable (3rd ed.), Princeton Univ. Press, 2006.

[9]

S. Morosawa, On the residual Julia sets of rational functions, Ergodic Theory and Dynam. Sys., 17 (1997), 205-210. doi: 10.1017/S0143385797069848.

[10]

S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambridge Univ. Press, 2000.

[11]

J. Qiao, Topological complexity of Julia sets, Sci. China Ser. A, 40 (1997), 1158-1165. doi: 10.1007/BF02931834.

[12]

L. Tan and Y. Yin, Local connectivity of the Julia set for geometrically finite rational maps, Sci. China Ser. A, 39 (1996), 39-47.

[1]

Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801

[2]

Hiroki Sumi. Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1205-1244. doi: 10.3934/dcds.2011.29.1205

[3]

Koh Katagata. Quartic Julia sets including any two copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2103-2112. doi: 10.3934/dcds.2016.36.2103

[4]

Robert L. Devaney, Daniel M. Look. Buried Sierpinski curve Julia sets. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1035-1046. doi: 10.3934/dcds.2005.13.1035

[5]

Danilo Antonio Caprio. A class of adding machines and Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5951-5970. doi: 10.3934/dcds.2016061

[6]

Luiz Henrique de Figueiredo, Diego Nehab, Jorge Stolfi, João Batista S. de Oliveira. Rigorous bounds for polynomial Julia sets. Journal of Computational Dynamics, 2016, 3 (2) : 113-137. doi: 10.3934/jcd.2016006

[7]

Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139

[8]

Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499

[9]

Tarik Aougab, Stella Chuyue Dong, Robert S. Strichartz. Laplacians on a family of quadratic Julia sets II. Communications on Pure & Applied Analysis, 2013, 12 (1) : 1-58. doi: 10.3934/cpaa.2013.12.1

[10]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[11]

Ali Messaoudi, Rafael Asmat Uceda. Stochastic adding machine and $2$-dimensional Julia sets. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5247-5269. doi: 10.3934/dcds.2014.34.5247

[12]

Ranjit Bhattacharjee, Robert L. Devaney, R.E. Lee Deville, Krešimir Josić, Monica Moreno-Rocha. Accessible points in the Julia sets of stable exponentials. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 299-318. doi: 10.3934/dcdsb.2001.1.299

[13]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[14]

Suzanne Lynch Hruska. Rigorous numerical models for the dynamics of complex Hénon mappings on their chain recurrent sets. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 529-558. doi: 10.3934/dcds.2006.15.529

[15]

Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375

[16]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[17]

Rich Stankewitz, Hiroki Sumi. Backward iteration algorithms for Julia sets of Möbius semigroups. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6475-6485. doi: 10.3934/dcds.2016079

[18]

Hiroki Sumi, Mariusz Urbański. Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 313-363. doi: 10.3934/dcds.2011.30.313

[19]

Mark Comerford. Non-autonomous Julia sets with measurable invariant sequences of line fields. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 629-642. doi: 10.3934/dcds.2013.33.629

[20]

Alexander Blokh, Lex Oversteegen, Vladlen Timorin. Non-degenerate locally connected models for plane continua and Julia sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5781-5795. doi: 10.3934/dcds.2017251

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (39)
  • HTML views (54)
  • Cited by (0)

Other articles
by authors

[Back to Top]