September 2018, 38(9): 4391-4419. doi: 10.3934/dcds.2018191

Global stability for a class of functional differential equations (Application to Nicholson's blowflies and Mackey-Glass models)

Département de Mathématiques, Faculté des Sciences, Université de Tlemcen, Laboratoire d'Analyse Non Linéaire et Mathématiques Appliquées, Tlemcen, BP 119, 13000, Algeria

Received  August 2017 Revised  April 2018 Published  June 2018

Global asymptotic and exponential stability of equilibria for the following class of functional differential equations with distributed delay is investigated
$ x'(t)=-f(x(t))+\int_{0}^{\tau}h(a)g(x(t-a))da.$
We make our analysis by introducing a new approach, combining a Lyapunov functional and monotone semiflow theory. The relevance of our results is illustrated by studying the well-known integro-differential Nicholson's blowflies and Mackey-Glass equations, where some delay independent stability conditions are provided. Furthermore, new results related to exponential stability region of the positive equilibrium for these both models are established.
Citation: Tarik Mohammed Touaoula. Global stability for a class of functional differential equations (Application to Nicholson's blowflies and Mackey-Glass models). Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4391-4419. doi: 10.3934/dcds.2018191
References:
[1]

L. BerezanskyE. Braverman and L. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems, Applied Math. Modelling, 34 (2010), 1405-1417. doi: 10.1016/j.apm.2009.08.027.

[2]

L. BerezanskyE. Braverman and L. Idels, Mackey-Glass model of hematopoiesis with non-monotone feedback: Stability, oscillation and control, Appl. Math. Compt., 219 (2013), 6268-6283. doi: 10.1016/j.amc.2012.12.043.

[3]

E. Braverman and D. Kinzebulatov, Nicholson's blowflies equation with distributed delay, Can. Appl. Math. Q, 14 (2006), 107-128.

[4]

E. Braverman and S. Zhukovskiy, Absolute and delay-dependent stability of equations with a distributed delay, Discrete and Continuous Dynam. Systems, 32 (2012), 2041-2061. doi: 10.3934/dcds.2012.32.2041.

[5]

H. A. El-Morshedy, Global attractivity in a population model with nonlinear death rate and distributed delays, J. Math. Anal. Appl., 410 (2014), 642-658. doi: 10.1016/j.jmaa.2013.08.060.

[6]

C. Foley and M. C. Mackey, Dynamics hematological disease, J. Math. Biol., 58 (2009), 285-322. doi: 10.1007/s00285-008-0165-3.

[7]

K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992. doi: 10.1007/978-94-015-7920-9.

[8]

W. S. C GurneyS. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17-21.

[9]

I. Gyori and S. Trofimchuk, Global attractivity in $x'(t) = -δ x(t)+pf(x(t-h))$, Dynam. Syst. Appl., 8 (1999), 197-210.

[10]

J. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., vol 25, Americal Mathetical Society, Providence, RI, 1988.

[11]

J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[12]

C. HuangZ. YangT. Yi and X. Zou, On the bassin of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, J. Differ. Equations, 256 (2014), 2101-2114. doi: 10.1016/j.jde.2013.12.015.

[13]

A. Ivanov and M. Mammadov, Global asymptotic stability in a class of nonlinear differential delay equations, Discrete and Continuous Dynam. Systems, 1 (2011), 727-736.

[14]

T. Krisztin and H. O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor, J. Differ. Equations, 13 (2001), 1-57. doi: 10.1023/A:1009091930589.

[15]

Y. Kuang, Delay Differential Equations, with Application in Population Dynamics, Academic Press, INC. 1993.

[16]

B. Lani-Wayda, Erratic solutions of simple delay equations, Trans. Amer. Math. Soc., 351 (1999), 901-945. doi: 10.1090/S0002-9947-99-02351-X.

[17]

E. LizM. PintoV. Tkachenko and S. Tromichuk, A global stability criterion for a family of delayed population models, Quart. Appl. Math., 63 (2005), 56-70. doi: 10.1090/S0033-569X-05-00951-3.

[18]

E. Liz and G. Rost, On the global attractor of delay differential equations with unimodal feedback, Discrete and continuous dynam. systems, 24 (2009), 1215-1224. doi: 10.3934/dcds.2009.24.1215.

[19]

E. LizV. Tkachenko and S. Tromichuk, A global stability criterion for scalar functional differential equations, SIAM. J. Math. Anal., 35 (2003), 596-622. doi: 10.1137/S0036141001399222.

[20]

E. LizV. Tkachenko and S. Trofimchuk, Mackey-Glass type delay differential equations near the boundary of absolute stability, J. Math. Anal. Appl., 275 (2002), 747-760. doi: 10.1016/S0022-247X(02)00416-X.

[21]

M. C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, Blood, 51 (1978), 941-956.

[22]

M. C. Mackey and L. Glass, Oscillations and chaos in physiological control systems, Science, 197 (1977), 287-289. doi: 10.1126/science.267326.

[23]

M. C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol., 33 (1994), 89-109. doi: 10.1007/BF00160175.

[24]

J. Mallet-Paret and R. Nussbaum, Global continuation and asymptotic behavior for periodic solutions of a differential delay equation, Ann. Mat. Pura. Appl., 145 (1986), 33-128. doi: 10.1007/BF01790539.

[25]

J. Mallet-Paret and R. Nussbaum, A differential-delay equation arising in optics and physiology, SIAM. J. Math. Anal., 20 (1989), 249-292. doi: 10.1137/0520019.

[26]

J. Mallet-Paret and G. R. Sell, The poincar?Bendixson theorem for monotone cyclic feedback systems with delay, J. Differ. Equations, 125 (1996), 441-489. doi: 10.1006/jdeq.1996.0037.

[27]

G. Rost and J. Wu, Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2655-2669. doi: 10.1098/rspa.2007.1890.

[28]

H. L. Smith, Monotone Dynamical Systems: An introduction to the theory of Competitive and Cooperative Systems, Math, Surveys Monogr, vol 41, Amer. Math. Soc. 1995.

[29]

H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2011. doi: 10.1007/978-1-4419-7646-8.

[30]

H. L. Smith and H. R. Thieme, Monotone semiflows in scalar non quasi-monotone functional differential equations, J. Math. Anal. Appl., 150 (1990), 289-306. doi: 10.1016/0022-247X(90)90105-O.

[31]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics V. 118, AMS, 2011.

[32]

H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton 2003.

[33]

D. Xu and X.-Q. Zhao, A nonlocal reaction-diffusion population model with stage structure, Can. Appl. Math. Q., 11 (2003), 303-319.

[34]

T. YiY. Chen and J. Wu, Global dynamics of delayed reaction-diffusion equations in unbounded domains, Z. Angew. Math. Phys., 63 (2012), 793-812. doi: 10.1007/s00033-012-0224-x.

[35]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Newmann condition, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 466 (2010), 2955-2973. doi: 10.1098/rspa.2009.0650.

[36]

T. Yi and X. Zou, Global dynamics of a delay differential equation with spatial non-locality in an unbounded domain, J. Differ. Equations, 251 (2011), 2598-2611. doi: 10.1016/j.jde.2011.04.027.

[37]

T. Yi and X. Zou, On Dirichlet Problem for a Class of Delayed Reaction-Diffusion Equations with Spatial Non-locality, J. Dyn. Diff. Equat., 25 (2013), 959-979. doi: 10.1007/s10884-013-9324-3.

[38]

Y. Yuan and J. Belair, Stability and Hopf bifurcation analysis for functional differential equation with distributed delay, SIAM, J. Appl. Dyn. Syst., 10 (2011), 551-581. doi: 10.1137/100794493.

[39]

Y. Yuan and X. Q. Zhao, Global stability for non monotone delay equations (with application to a model of blood cell production), J. Differ. Equations, 252 (2012), 2189-2209. doi: 10.1016/j.jde.2011.08.026.

show all references

References:
[1]

L. BerezanskyE. Braverman and L. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems, Applied Math. Modelling, 34 (2010), 1405-1417. doi: 10.1016/j.apm.2009.08.027.

[2]

L. BerezanskyE. Braverman and L. Idels, Mackey-Glass model of hematopoiesis with non-monotone feedback: Stability, oscillation and control, Appl. Math. Compt., 219 (2013), 6268-6283. doi: 10.1016/j.amc.2012.12.043.

[3]

E. Braverman and D. Kinzebulatov, Nicholson's blowflies equation with distributed delay, Can. Appl. Math. Q, 14 (2006), 107-128.

[4]

E. Braverman and S. Zhukovskiy, Absolute and delay-dependent stability of equations with a distributed delay, Discrete and Continuous Dynam. Systems, 32 (2012), 2041-2061. doi: 10.3934/dcds.2012.32.2041.

[5]

H. A. El-Morshedy, Global attractivity in a population model with nonlinear death rate and distributed delays, J. Math. Anal. Appl., 410 (2014), 642-658. doi: 10.1016/j.jmaa.2013.08.060.

[6]

C. Foley and M. C. Mackey, Dynamics hematological disease, J. Math. Biol., 58 (2009), 285-322. doi: 10.1007/s00285-008-0165-3.

[7]

K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992. doi: 10.1007/978-94-015-7920-9.

[8]

W. S. C GurneyS. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17-21.

[9]

I. Gyori and S. Trofimchuk, Global attractivity in $x'(t) = -δ x(t)+pf(x(t-h))$, Dynam. Syst. Appl., 8 (1999), 197-210.

[10]

J. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., vol 25, Americal Mathetical Society, Providence, RI, 1988.

[11]

J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[12]

C. HuangZ. YangT. Yi and X. Zou, On the bassin of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, J. Differ. Equations, 256 (2014), 2101-2114. doi: 10.1016/j.jde.2013.12.015.

[13]

A. Ivanov and M. Mammadov, Global asymptotic stability in a class of nonlinear differential delay equations, Discrete and Continuous Dynam. Systems, 1 (2011), 727-736.

[14]

T. Krisztin and H. O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor, J. Differ. Equations, 13 (2001), 1-57. doi: 10.1023/A:1009091930589.

[15]

Y. Kuang, Delay Differential Equations, with Application in Population Dynamics, Academic Press, INC. 1993.

[16]

B. Lani-Wayda, Erratic solutions of simple delay equations, Trans. Amer. Math. Soc., 351 (1999), 901-945. doi: 10.1090/S0002-9947-99-02351-X.

[17]

E. LizM. PintoV. Tkachenko and S. Tromichuk, A global stability criterion for a family of delayed population models, Quart. Appl. Math., 63 (2005), 56-70. doi: 10.1090/S0033-569X-05-00951-3.

[18]

E. Liz and G. Rost, On the global attractor of delay differential equations with unimodal feedback, Discrete and continuous dynam. systems, 24 (2009), 1215-1224. doi: 10.3934/dcds.2009.24.1215.

[19]

E. LizV. Tkachenko and S. Tromichuk, A global stability criterion for scalar functional differential equations, SIAM. J. Math. Anal., 35 (2003), 596-622. doi: 10.1137/S0036141001399222.

[20]

E. LizV. Tkachenko and S. Trofimchuk, Mackey-Glass type delay differential equations near the boundary of absolute stability, J. Math. Anal. Appl., 275 (2002), 747-760. doi: 10.1016/S0022-247X(02)00416-X.

[21]

M. C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, Blood, 51 (1978), 941-956.

[22]

M. C. Mackey and L. Glass, Oscillations and chaos in physiological control systems, Science, 197 (1977), 287-289. doi: 10.1126/science.267326.

[23]

M. C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol., 33 (1994), 89-109. doi: 10.1007/BF00160175.

[24]

J. Mallet-Paret and R. Nussbaum, Global continuation and asymptotic behavior for periodic solutions of a differential delay equation, Ann. Mat. Pura. Appl., 145 (1986), 33-128. doi: 10.1007/BF01790539.

[25]

J. Mallet-Paret and R. Nussbaum, A differential-delay equation arising in optics and physiology, SIAM. J. Math. Anal., 20 (1989), 249-292. doi: 10.1137/0520019.

[26]

J. Mallet-Paret and G. R. Sell, The poincar?Bendixson theorem for monotone cyclic feedback systems with delay, J. Differ. Equations, 125 (1996), 441-489. doi: 10.1006/jdeq.1996.0037.

[27]

G. Rost and J. Wu, Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2655-2669. doi: 10.1098/rspa.2007.1890.

[28]

H. L. Smith, Monotone Dynamical Systems: An introduction to the theory of Competitive and Cooperative Systems, Math, Surveys Monogr, vol 41, Amer. Math. Soc. 1995.

[29]

H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2011. doi: 10.1007/978-1-4419-7646-8.

[30]

H. L. Smith and H. R. Thieme, Monotone semiflows in scalar non quasi-monotone functional differential equations, J. Math. Anal. Appl., 150 (1990), 289-306. doi: 10.1016/0022-247X(90)90105-O.

[31]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics V. 118, AMS, 2011.

[32]

H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton 2003.

[33]

D. Xu and X.-Q. Zhao, A nonlocal reaction-diffusion population model with stage structure, Can. Appl. Math. Q., 11 (2003), 303-319.

[34]

T. YiY. Chen and J. Wu, Global dynamics of delayed reaction-diffusion equations in unbounded domains, Z. Angew. Math. Phys., 63 (2012), 793-812. doi: 10.1007/s00033-012-0224-x.

[35]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Newmann condition, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 466 (2010), 2955-2973. doi: 10.1098/rspa.2009.0650.

[36]

T. Yi and X. Zou, Global dynamics of a delay differential equation with spatial non-locality in an unbounded domain, J. Differ. Equations, 251 (2011), 2598-2611. doi: 10.1016/j.jde.2011.04.027.

[37]

T. Yi and X. Zou, On Dirichlet Problem for a Class of Delayed Reaction-Diffusion Equations with Spatial Non-locality, J. Dyn. Diff. Equat., 25 (2013), 959-979. doi: 10.1007/s10884-013-9324-3.

[38]

Y. Yuan and J. Belair, Stability and Hopf bifurcation analysis for functional differential equation with distributed delay, SIAM, J. Appl. Dyn. Syst., 10 (2011), 551-581. doi: 10.1137/100794493.

[39]

Y. Yuan and X. Q. Zhao, Global stability for non monotone delay equations (with application to a model of blood cell production), J. Differ. Equations, 252 (2012), 2189-2209. doi: 10.1016/j.jde.2011.08.026.

[1]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure & Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[2]

Je-Chiang Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 601-623. doi: 10.3934/dcds.2008.21.601

[3]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[4]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[5]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[6]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[7]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[8]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[9]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[10]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[11]

Shiwang Ma, Xiao-Qiang Zhao. Global asymptotic stability of minimal fronts in monostable lattice equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 259-275. doi: 10.3934/dcds.2008.21.259

[12]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[13]

Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991

[14]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[15]

Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110

[16]

Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763

[17]

Jin Zhang, Peter E. Kloeden, Meihua Yang, Chengkui Zhong. Global exponential κ-dissipative semigroups and exponential attraction. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3487-3502. doi: 10.3934/dcds.2017148

[18]

Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control & Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359

[19]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[20]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

2017 Impact Factor: 1.179

Article outline

[Back to Top]