August 2018, 38(8): 3939-3953. doi: 10.3934/dcds.2018171

Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space

1. 

School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China

2. 

Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, USA

* Corresponding author: Jingbo Dou

Received  September 2017 Revised  January 2018 Published  May 2018

In this paper we mainly classify the extremal functions of logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space $\mathbb{R}_+^{n}$, and also present some remarks on the extremal functions of logarithmic Hardy-Littlewood-Sobolev inequality on the whole space $\mathbb{R}^{n}$. Our main techniques are Kelvin transformation and the method of moving spheres in integral forms.

Citation: Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171
References:
[1]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138 (1993), 213-242. doi: 10.2307/2946638.

[2]

T. P. BransonL. Fontana and C. Morpurgo, Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math., 177 (2013), 1-52. doi: 10.4007/annals.2013.177.1.1.

[3]

E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbb{S}^n$, Geom. Funct. Anal., 2 (1992), 90-104. doi: 10.1007/BF01895706.

[4]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.

[5]

K. S. Chou and T. Y. H. Wan, Asymptotic radial symmetry for solutions of $Δ u + e^u= 0$ in a punctured disc, Pacific J. Math., 163 (1994), 269-276. doi: 10.2140/pjm.1994.163.269.

[6]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not. IMRN, 2015 (2015), 651-687. doi: 10.1093/imrn/rnt213.

[7]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.

[8]

Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. D'Anal. Math., 90 (2003), 27-87. doi: 10.1007/BF02786551.

[9]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417. doi: 10.1215/S0012-7094-95-08016-8.

[10]

C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231. doi: 10.1007/s000140050052.

[11]

C. Morpurgo, The logarithmic Hardy-Littlewood-Sobolev inequality and extremals of zeta functions on $\mathbb{S}^n$, Geom. Funct. Anal., 6 (1996), 146-171. doi: 10.1007/BF02246771.

[12]

Q. A. Ngô and V. H. Nguyen, Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space $\mathbb{R}_+^n$, Int. Math. Res. Not. IMRN, 2017 (2017), 6187-6230. doi: 10.1093/imrn/rnw108.

[13]

W. M. Ni, On the elliptic equation $Δ u + Ke^\frac{n+2}{n-2} = 0$, its generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529. doi: 10.1512/iumj.1982.31.31040.

[14]

E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326. doi: 10.1007/BF01212171.

[15]

J. Wei and X. Xu, Prescribing $Q$-curvature problem on $\mathbb{S}^n$, J. Funct. Anal., 257 (2009), 1995-2023. doi: 10.1016/j.jfa.2009.06.024.

[16]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228. doi: 10.1007/s002080050258.

[17]

X. Xu, Uniqueness and non-existence theorems for conformally invariant equations, J. Funct. Anal., 222 (2005), 1-28. doi: 10.1016/j.jfa.2004.07.003.

show all references

References:
[1]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138 (1993), 213-242. doi: 10.2307/2946638.

[2]

T. P. BransonL. Fontana and C. Morpurgo, Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math., 177 (2013), 1-52. doi: 10.4007/annals.2013.177.1.1.

[3]

E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbb{S}^n$, Geom. Funct. Anal., 2 (1992), 90-104. doi: 10.1007/BF01895706.

[4]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.

[5]

K. S. Chou and T. Y. H. Wan, Asymptotic radial symmetry for solutions of $Δ u + e^u= 0$ in a punctured disc, Pacific J. Math., 163 (1994), 269-276. doi: 10.2140/pjm.1994.163.269.

[6]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not. IMRN, 2015 (2015), 651-687. doi: 10.1093/imrn/rnt213.

[7]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.

[8]

Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. D'Anal. Math., 90 (2003), 27-87. doi: 10.1007/BF02786551.

[9]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417. doi: 10.1215/S0012-7094-95-08016-8.

[10]

C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231. doi: 10.1007/s000140050052.

[11]

C. Morpurgo, The logarithmic Hardy-Littlewood-Sobolev inequality and extremals of zeta functions on $\mathbb{S}^n$, Geom. Funct. Anal., 6 (1996), 146-171. doi: 10.1007/BF02246771.

[12]

Q. A. Ngô and V. H. Nguyen, Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space $\mathbb{R}_+^n$, Int. Math. Res. Not. IMRN, 2017 (2017), 6187-6230. doi: 10.1093/imrn/rnw108.

[13]

W. M. Ni, On the elliptic equation $Δ u + Ke^\frac{n+2}{n-2} = 0$, its generalizations and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529. doi: 10.1512/iumj.1982.31.31040.

[14]

E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326. doi: 10.1007/BF01212171.

[15]

J. Wei and X. Xu, Prescribing $Q$-curvature problem on $\mathbb{S}^n$, J. Funct. Anal., 257 (2009), 1995-2023. doi: 10.1016/j.jfa.2009.06.024.

[16]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228. doi: 10.1007/s002080050258.

[17]

X. Xu, Uniqueness and non-existence theorems for conformally invariant equations, J. Funct. Anal., 222 (2005), 1-28. doi: 10.1016/j.jfa.2004.07.003.

[1]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[2]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[3]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[4]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[5]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[6]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[7]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[8]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[9]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[10]

Jochen Merker. Generalizations of logarithmic Sobolev inequalities. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 329-338. doi: 10.3934/dcdss.2008.1.329

[11]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[12]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[13]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[14]

Max Fathi, Emanuel Indrei, Michel Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6835-6853. doi: 10.3934/dcds.2016097

[15]

YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1

[16]

Igor E. Verbitsky. The Hessian Sobolev inequality and its extensions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6165-6179. doi: 10.3934/dcds.2015.35.6165

[17]

Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123

[18]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[19]

S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279

[20]

Takayoshi Ogawa, Kento Seraku. Logarithmic Sobolev and Shannon's inequalities and an application to the uncertainty principle. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1651-1669. doi: 10.3934/cpaa.2018079

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (41)
  • HTML views (75)
  • Cited by (0)

Other articles
by authors

[Back to Top]