• Previous Article
    Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases
  • DCDS Home
  • This Issue
  • Next Article
    Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space
August 2018, 38(8): 3913-3938. doi: 10.3934/dcds.2018170

Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation

1. 

Universidad Carlos Ⅲ de Madrid, Av. Universidad 30, 28911-Leganés, Spain & Instituto de Ciencias Matemáticas, ICMAT, C/Nicolás Cabrera 15, 28049 Madrid, Spain

2. 

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

Received  September 2017 Revised  February 2018 Published  May 2018

Fund Project: The first author was partially supported by the Ministry of Economy and Competitiveness of Spain under research projects RYC-2014-15284 and MTM2016-80618-P

The Cauchy problem for a fourth-order Boussinesq-type quasilinear wave equation (QWE-4) of the form
$u_{tt} = -(|u|^n u)_{xxxx}\;\;\; \mbox{in}\;\;\; \mathbb{R} × \mathbb{R}_+, \;\;\;\mbox{with a fixed exponent} \, \, \, n>0, $
and bounded smooth initial data, is considered. Self-similar single-point gradient blow-up solutions are studied. It is shown that such singular solutions exist and satisfy the case of the so-called self-similarity of the second type.
Together with an essential and, often, key use of numerical methods to describe possible types of gradient blow-up, a "homotopy" approach is applied that traces out the behaviour of such singularity patterns as
$n \to 0^+$
, when the classic linear beam equation occurs
$u_{tt} = -u_{xxxx}, $
with simple, better-known and understandable evolution properties.
Citation: Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170
References:
[1]

P. Álvarez-Caudevilla and V. A. Galaktionov, Local bifurcation-branching analysis of global and "blow-up" patterns for a fourth-order thin film equation, Nonlinear Differ. Equat. Appl., 18 (2011), 483-537. doi: 10.1007/s00030-011-0105-6.

[2]

P. Álvarez-CaudevillaJ. D. Evans and V. A. Galaktionov, The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, 10 (2013), 1761-1792. doi: 10.1007/s00009-013-0263-3.

[3]

P. Álvarez-Caudevilla and V. A. Galaktionov, Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches, Nonlinear Analysis, 121 (2015), 19-35. doi: 10.1016/j.na.2014.08.002.

[4]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin/Tokyo, 1985. doi: 10.1007/978-3-662-00547-7.

[5]

J. Eggers and M. Fontelos, The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009), R1-R44. doi: 10.1088/0951-7715/22/1/R01.

[6]

Yu. V. EgorovV. A. GalaktionovV. A. Kondratiev and S. I. Pohozaev, Asymptotic behaviour of global solutions to higher-order semilinear parabolic equations in the supercritical range, Adv. Differ. Equat., 9 (2004), 1009-1038.

[7]

J. D. EvansV. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation. Ⅰ. Blow-up similarity solutions; Ⅱ. Global similarity patterns, Nonlinearity, 20 (2007), 1799-1841, 1843-1881. doi: 10.1088/0951-7715/20/8/003.

[8]

A. FaviniG. R. GoldsteinJ. A. Goldstein and S. Romanelli, Classification of general Wentzell boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333 (2007), 219-235. doi: 10.1016/j.jmaa.2006.11.058.

[9]

V. A. Galaktionov, On higher-order viscosity approximations of odd-order nonlinear PDEs, J. Engr. Math., 60 (2008), 173-208. doi: 10.1007/s10665-007-9146-6.

[10]

V. A. Galaktionov, Hermitian spectral theory and blow-up patterns for a fourth-order semilinear Boussinesq equation, Stud. Appl. Math., 121 (2008), 395-431. doi: 10.1111/j.1467-9590.2008.00421.x.

[11]

V. A. Galaktionov, Formation of shocks in higher-order nonlinear dispersion PDEs: nonuniqueness and nonexistence of entropy, (2009), arXiv: 0902.1635.

[12]

V. A. Galaktionov, Regional, single point, and global blow-up for the fourth-order porous medium type equation with source, J. Partial Differ. Equ., 23 (2010), 105–146, arXiv: 0901.4279.

[13]

V. A. Galaktionov, Shock waves and compactons for fifth-order nonlinear dispersion equations, European J. Appl. Math., 21 (2010), 1–50. (arXiv: 0902.1632). doi: 10.1017/S0956792509990118.

[14]

V. A. Galaktionov, Single point gradient blow-up and nonuniqueness for a third-order nonlinear dispersion equation, Stud. Appl. Math., 126 (2011), 103-143. doi: 10.1111/j.1467-9590.2010.00499.x.

[15]

V. A. Galaktionov and S. I. Pohozaev, Third-order nonlinear dispersive equations: Shocks, rarefaction, and blow-up waves, Comput. Math. Math. Phys., 48 (2008), 1784-1810. doi: 10.1134/S0965542508100060.

[16]

V. A. Galaktionov and S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC, Boca Raton, Florida, 2007.

[17]

M. Inc, New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations, Chaos, Solitons and Fractals, 33 (2007), 1275-1284. doi: 10.1016/j.chaos.2006.01.083.

[18]

M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7.

[19]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Mon., Vol. 71, Amer. Math. Soc., Providence, RI, 1988.

[20]

M. A. Naimark, Linear Differential Operators, Part Ⅰ, Ungar Publ. Comp., New York, 1968.

[21]

M. A. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations, Noordhoff Int. Publ., Leiden, 1974.

[22]

Z. Yan, Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation Ⅱ. Solitary pattern solutions, Chaos, Solitons and Fractals, 18 (2003), 869-880. doi: 10.1016/S0960-0779(03)00059-6.

[23]

Ya. B. Zel'dovich, The motion of a gas under the action of a short term pressure shock, Akust. Zh., 2 (1956), 28–38; Soviet Phys. Acoustics, 2 (1956), 25–35.

show all references

References:
[1]

P. Álvarez-Caudevilla and V. A. Galaktionov, Local bifurcation-branching analysis of global and "blow-up" patterns for a fourth-order thin film equation, Nonlinear Differ. Equat. Appl., 18 (2011), 483-537. doi: 10.1007/s00030-011-0105-6.

[2]

P. Álvarez-CaudevillaJ. D. Evans and V. A. Galaktionov, The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, 10 (2013), 1761-1792. doi: 10.1007/s00009-013-0263-3.

[3]

P. Álvarez-Caudevilla and V. A. Galaktionov, Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches, Nonlinear Analysis, 121 (2015), 19-35. doi: 10.1016/j.na.2014.08.002.

[4]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin/Tokyo, 1985. doi: 10.1007/978-3-662-00547-7.

[5]

J. Eggers and M. Fontelos, The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009), R1-R44. doi: 10.1088/0951-7715/22/1/R01.

[6]

Yu. V. EgorovV. A. GalaktionovV. A. Kondratiev and S. I. Pohozaev, Asymptotic behaviour of global solutions to higher-order semilinear parabolic equations in the supercritical range, Adv. Differ. Equat., 9 (2004), 1009-1038.

[7]

J. D. EvansV. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation. Ⅰ. Blow-up similarity solutions; Ⅱ. Global similarity patterns, Nonlinearity, 20 (2007), 1799-1841, 1843-1881. doi: 10.1088/0951-7715/20/8/003.

[8]

A. FaviniG. R. GoldsteinJ. A. Goldstein and S. Romanelli, Classification of general Wentzell boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333 (2007), 219-235. doi: 10.1016/j.jmaa.2006.11.058.

[9]

V. A. Galaktionov, On higher-order viscosity approximations of odd-order nonlinear PDEs, J. Engr. Math., 60 (2008), 173-208. doi: 10.1007/s10665-007-9146-6.

[10]

V. A. Galaktionov, Hermitian spectral theory and blow-up patterns for a fourth-order semilinear Boussinesq equation, Stud. Appl. Math., 121 (2008), 395-431. doi: 10.1111/j.1467-9590.2008.00421.x.

[11]

V. A. Galaktionov, Formation of shocks in higher-order nonlinear dispersion PDEs: nonuniqueness and nonexistence of entropy, (2009), arXiv: 0902.1635.

[12]

V. A. Galaktionov, Regional, single point, and global blow-up for the fourth-order porous medium type equation with source, J. Partial Differ. Equ., 23 (2010), 105–146, arXiv: 0901.4279.

[13]

V. A. Galaktionov, Shock waves and compactons for fifth-order nonlinear dispersion equations, European J. Appl. Math., 21 (2010), 1–50. (arXiv: 0902.1632). doi: 10.1017/S0956792509990118.

[14]

V. A. Galaktionov, Single point gradient blow-up and nonuniqueness for a third-order nonlinear dispersion equation, Stud. Appl. Math., 126 (2011), 103-143. doi: 10.1111/j.1467-9590.2010.00499.x.

[15]

V. A. Galaktionov and S. I. Pohozaev, Third-order nonlinear dispersive equations: Shocks, rarefaction, and blow-up waves, Comput. Math. Math. Phys., 48 (2008), 1784-1810. doi: 10.1134/S0965542508100060.

[16]

V. A. Galaktionov and S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC, Boca Raton, Florida, 2007.

[17]

M. Inc, New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations, Chaos, Solitons and Fractals, 33 (2007), 1275-1284. doi: 10.1016/j.chaos.2006.01.083.

[18]

M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7.

[19]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Mon., Vol. 71, Amer. Math. Soc., Providence, RI, 1988.

[20]

M. A. Naimark, Linear Differential Operators, Part Ⅰ, Ungar Publ. Comp., New York, 1968.

[21]

M. A. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations, Noordhoff Int. Publ., Leiden, 1974.

[22]

Z. Yan, Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation Ⅱ. Solitary pattern solutions, Chaos, Solitons and Fractals, 18 (2003), 869-880. doi: 10.1016/S0960-0779(03)00059-6.

[23]

Ya. B. Zel'dovich, The motion of a gas under the action of a short term pressure shock, Akust. Zh., 2 (1956), 28–38; Soviet Phys. Acoustics, 2 (1956), 25–35.

Figure 1.  Illustrative numerical solutions of the oscillatory function $H(s)$ from (2.8) in the case $n = 1$ and selected $\beta$
Figure 2.  Shooting the first similarity profile satisfying (5.5), (5.7) for $n = 1$
Figure 3.  he first similarity profiles satisfying (5.5), (5.7) for $n = 3, 2, 1, 0$ and $n = -0.5$
Figure 4.  Numerical solution in the $n=0$ case of (3.1) with (3.7) and $\nu=g"'(0)=-1,\alpha=0.5$
[1]

Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677

[2]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[3]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[4]

Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25.

[5]

Mikhaël Balabane, Mustapha Jazar, Philippe Souplet. Oscillatory blow-up in nonlinear second order ODE's: The critical case. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 577-584. doi: 10.3934/dcds.2003.9.577

[6]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[7]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[8]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[9]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[10]

Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729

[11]

Evgeny Galakhov, Olga Salieva. Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets. Conference Publications, 2015, 2015 (special) : 489-494. doi: 10.3934/proc.2015.0489

[12]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[13]

Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280

[14]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[15]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[16]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[17]

Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117

[18]

Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025

[19]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[20]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (79)
  • HTML views (87)
  • Cited by (0)

[Back to Top]