• Previous Article
    The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form
  • DCDS Home
  • This Issue
  • Next Article
    Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle
August 2018, 38(8): 3831-3850. doi: 10.3934/dcds.2018166

Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros

1. 

Departamento de Matemática, Universidad Técnica Federico Santa María, Avenida España 1680, Casilla 110-V, Valparaíso, Chile

2. 

Departamento de Matemática, Instituto de Ciêencias Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970, São Carlos SP, Brazil

* Corresponding author: E. Massa

Received  August 2017 Revised  April 2018 Published  May 2018

Fund Project: The first author gratefully acknowledges financial support from Fondecyt grants 1161635, 1171532 and 1171691
The author E. Massa was supported by: grant #2014/25398-0, São Paulo Research Foundation (FAPESP) and grants #308354/2014-1, #303447/2017-6, CNPq/Brazil

In this paper we consider the equation $(-Δ)^k\, u = λ f(x, u)+μ g(x, u)$ with Navier boundary conditions, in a bounded and smooth domain. The main interest is when the nonlinearity is nonnegative but admits a zero and $f, g$ are, respectively, identically zero above and below the zero. We prove the existence of multiple positive solutions when the parameters lie in a region of the form $λ>\overline λ$ and $0 < μ< \overlineμ(λ)$, then we provide further conditions under which, respectively, the bound $\overlineμ(λ)$ is either necessary, or can be removed.

Citation: Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166
References:
[1]

A. AmbrosettiH. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543. doi: 10.1006/jfan.1994.1078.

[2]

T. Bartsch and Z. Liu, Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the p-Laplacian, Commun. Contemp. Math., 6 (2004), 245-258. doi: 10.1142/S0219199704001306.

[3]

F. BernisJ. García Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations, 1 (1996), 219-240.

[4]

H. Brezis and L. Nirenberg, H1 versus C1 local minimizers, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 465-472.

[5]

D. G. de FigueiredoJ.-P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467. doi: 10.1016/S0022-1236(02)00060-5.

[6]

D. G. de FigueiredoJ.-P. Gossez and P. Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc. (JEMS), 8 (2006), 269-286. doi: 10.4171/JEMS/52.

[7]

D. G. de FigueiredoP.-L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9), 61 (1982), 41-63.

[8]

F. O. de Paiva and E. Massa, Multiple solutions for some elliptic equations with a nonlinearity concave at the origin, Nonlinear Anal., 66 (2007), 2940-2946. doi: 10.1016/j.na.2006.04.015.

[9]

J. Díaz and J. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521-524.

[10]

F. Ebobisse and M. Ahmedou, On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent, Nonlinear Anal., 52 (2003), 1535-1552. doi: 10.1016/S0362-546X(02)00273-0.

[11]

D. E. EdmundsD. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal., 112 (1990), 269-289. doi: 10.1007/BF00381236.

[12]

J. García-Melián and L. Iturriaga, Multiplicity of solutions for some semilinear problems involving nonlinearities with zeros, Israel J. Math., 210 (2015), 233-244. doi: 10.1007/s11856-015-1251-z.

[13]

J. García-Melián and J. Sabina de Lis, Stationary profiles of degenerate problems when a parameter is large, Differential Integral Equations, 13 (2000), 1201-1232.

[14]

F. GazzolaH.-C. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003), 117-143. doi: 10.1007/s00526-002-0182-9.

[15]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, vol. 1991 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010, Positivity preserving and nonlinear higher order elliptic equations in bounded domains. doi: 10.1007/978-3-642-12245-3.

[16]

M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902. doi: 10.1016/0362-546X(89)90020-5.

[17]

P. Hess, On multiple positive solutions of nonlinear elliptic eigenvalue problems, Comm. Partial Differential Equations, 6 (1981), 951-961. doi: 10.1080/03605308108820200.

[18]

J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58. doi: 10.1006/jfan.1993.1062.

[19]

L. IturriagaS. Lorca and E. Massa, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 763-771. doi: 10.1016/j.anihpc.2009.11.003.

[20]

L. IturriagaS. Lorca and E. Massa, Multiple positive solutions for the m-Laplacian and a nonlinearity with many zeros, Differential Integral Equations, 30 (2017), 145-159.

[21]

L. IturriagaE. MassaJ. Sánchez and P. Ubilla, Positive solutions of the p-Laplacian involving a superlinear nonlinearity with zeros, J. Differential Equations, 248 (2010), 309-327. doi: 10.1016/j.jde.2009.08.008.

[22]

L. IturriagaE. MassaJ. Sanchez and P. Ubilla, Positive solutions for an elliptic equation in an annulus with a superlinear nonlinearity with zeros, Math. Nach., 287 (2014), 1131-1141. doi: 10.1002/mana.201100285.

[23]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578. doi: 10.1137/1032120.

[24]

A. C. Lazer and P. J. McKenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl., 181 (1994), 648-655. doi: 10.1006/jmaa.1994.1049.

[25]

P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441-467. doi: 10.1137/1024101.

[26]

Z. Liu, Positive solutions of superlinear elliptic equations, J. Funct. Anal., 167 (1999), 370-398. doi: 10.1006/jfan.1999.3446.

[27]

Z. Liu, Positive solutions of a class of nonlinear elliptic eigenvalue problems, Math. Z., 242 (2002), 663-686. doi: 10.1007/s002090100373.

[28]

A. M. Micheletti and A. Pistoia, Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Anal., 31 (1998), 895-908. doi: 10.1016/S0362-546X(97)00446-X.

[29]

A. M. Micheletti and A. Pistoia, Nontrivial solutions for some fourth order semilinear elliptic problems, Nonlinear Anal., 34 (1998), 509-523. doi: 10.1016/S0362-546X(97)00596-8.

[30]

E. S. NoussairC. A. Swanson and J. Yang, Critical semilinear biharmonic equations in RN, Proc. Roy. Soc. Edinburgh Sect. A, 121 (1992), 139-148. doi: 10.1017/S0308210500014189.

[31]

L. A. Peletier and R. van der Vorst, Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation, Differential Integral Equations, 5 (1992), 747-767.

[32]

P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. (9), 69 (1990), 55-83.

[33]

S. Takeuchi, Coincidence sets in semilinear elliptic problems of logistic type, Differential Integral Equations, 20 (2007), 1075-1080.

[34]

S. Takeuchi, Partial flat core properties associated to the p-Laplace operator, Discrete Contin. Dyn. Syst., (2007), 965-973.

[35]

G. Tarantello, A note on a semilinear elliptic problem, Differential Integral Equations, 5 (1992), 561-565.

[36]

G. Xu and J. Zhang, Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity, J. Math. Anal. Appl., 281 (2003), 633-640. doi: 10.1016/S0022-247X(03)00170-7.

[37]

J. Zhang and Z. Wei, Multiple solutions for a class of biharmonic equations with a nonlinearity concave at the origin, J. Math. Anal. Appl., 383 (2011), 291-306. doi: 10.1016/j.jmaa.2011.05.030.

[38]

Y. Zhang, Positive solutions of semilinear biharmonic equations with critical Sobolev exponents, Nonlinear Anal., 75 (2012), 55-67. doi: 10.1016/j.na.2011.07.065.

show all references

References:
[1]

A. AmbrosettiH. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543. doi: 10.1006/jfan.1994.1078.

[2]

T. Bartsch and Z. Liu, Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the p-Laplacian, Commun. Contemp. Math., 6 (2004), 245-258. doi: 10.1142/S0219199704001306.

[3]

F. BernisJ. García Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations, 1 (1996), 219-240.

[4]

H. Brezis and L. Nirenberg, H1 versus C1 local minimizers, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 465-472.

[5]

D. G. de FigueiredoJ.-P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467. doi: 10.1016/S0022-1236(02)00060-5.

[6]

D. G. de FigueiredoJ.-P. Gossez and P. Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc. (JEMS), 8 (2006), 269-286. doi: 10.4171/JEMS/52.

[7]

D. G. de FigueiredoP.-L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl. (9), 61 (1982), 41-63.

[8]

F. O. de Paiva and E. Massa, Multiple solutions for some elliptic equations with a nonlinearity concave at the origin, Nonlinear Anal., 66 (2007), 2940-2946. doi: 10.1016/j.na.2006.04.015.

[9]

J. Díaz and J. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521-524.

[10]

F. Ebobisse and M. Ahmedou, On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent, Nonlinear Anal., 52 (2003), 1535-1552. doi: 10.1016/S0362-546X(02)00273-0.

[11]

D. E. EdmundsD. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal., 112 (1990), 269-289. doi: 10.1007/BF00381236.

[12]

J. García-Melián and L. Iturriaga, Multiplicity of solutions for some semilinear problems involving nonlinearities with zeros, Israel J. Math., 210 (2015), 233-244. doi: 10.1007/s11856-015-1251-z.

[13]

J. García-Melián and J. Sabina de Lis, Stationary profiles of degenerate problems when a parameter is large, Differential Integral Equations, 13 (2000), 1201-1232.

[14]

F. GazzolaH.-C. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003), 117-143. doi: 10.1007/s00526-002-0182-9.

[15]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, vol. 1991 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010, Positivity preserving and nonlinear higher order elliptic equations in bounded domains. doi: 10.1007/978-3-642-12245-3.

[16]

M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902. doi: 10.1016/0362-546X(89)90020-5.

[17]

P. Hess, On multiple positive solutions of nonlinear elliptic eigenvalue problems, Comm. Partial Differential Equations, 6 (1981), 951-961. doi: 10.1080/03605308108820200.

[18]

J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58. doi: 10.1006/jfan.1993.1062.

[19]

L. IturriagaS. Lorca and E. Massa, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 763-771. doi: 10.1016/j.anihpc.2009.11.003.

[20]

L. IturriagaS. Lorca and E. Massa, Multiple positive solutions for the m-Laplacian and a nonlinearity with many zeros, Differential Integral Equations, 30 (2017), 145-159.

[21]

L. IturriagaE. MassaJ. Sánchez and P. Ubilla, Positive solutions of the p-Laplacian involving a superlinear nonlinearity with zeros, J. Differential Equations, 248 (2010), 309-327. doi: 10.1016/j.jde.2009.08.008.

[22]

L. IturriagaE. MassaJ. Sanchez and P. Ubilla, Positive solutions for an elliptic equation in an annulus with a superlinear nonlinearity with zeros, Math. Nach., 287 (2014), 1131-1141. doi: 10.1002/mana.201100285.

[23]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578. doi: 10.1137/1032120.

[24]

A. C. Lazer and P. J. McKenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl., 181 (1994), 648-655. doi: 10.1006/jmaa.1994.1049.

[25]

P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441-467. doi: 10.1137/1024101.

[26]

Z. Liu, Positive solutions of superlinear elliptic equations, J. Funct. Anal., 167 (1999), 370-398. doi: 10.1006/jfan.1999.3446.

[27]

Z. Liu, Positive solutions of a class of nonlinear elliptic eigenvalue problems, Math. Z., 242 (2002), 663-686. doi: 10.1007/s002090100373.

[28]

A. M. Micheletti and A. Pistoia, Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Anal., 31 (1998), 895-908. doi: 10.1016/S0362-546X(97)00446-X.

[29]

A. M. Micheletti and A. Pistoia, Nontrivial solutions for some fourth order semilinear elliptic problems, Nonlinear Anal., 34 (1998), 509-523. doi: 10.1016/S0362-546X(97)00596-8.

[30]

E. S. NoussairC. A. Swanson and J. Yang, Critical semilinear biharmonic equations in RN, Proc. Roy. Soc. Edinburgh Sect. A, 121 (1992), 139-148. doi: 10.1017/S0308210500014189.

[31]

L. A. Peletier and R. van der Vorst, Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation, Differential Integral Equations, 5 (1992), 747-767.

[32]

P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. (9), 69 (1990), 55-83.

[33]

S. Takeuchi, Coincidence sets in semilinear elliptic problems of logistic type, Differential Integral Equations, 20 (2007), 1075-1080.

[34]

S. Takeuchi, Partial flat core properties associated to the p-Laplace operator, Discrete Contin. Dyn. Syst., (2007), 965-973.

[35]

G. Tarantello, A note on a semilinear elliptic problem, Differential Integral Equations, 5 (1992), 561-565.

[36]

G. Xu and J. Zhang, Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity, J. Math. Anal. Appl., 281 (2003), 633-640. doi: 10.1016/S0022-247X(03)00170-7.

[37]

J. Zhang and Z. Wei, Multiple solutions for a class of biharmonic equations with a nonlinearity concave at the origin, J. Math. Anal. Appl., 383 (2011), 291-306. doi: 10.1016/j.jmaa.2011.05.030.

[38]

Y. Zhang, Positive solutions of semilinear biharmonic equations with critical Sobolev exponents, Nonlinear Anal., 75 (2012), 55-67. doi: 10.1016/j.na.2011.07.065.

[1]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[2]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[3]

Feliz Minhós, João Fialho. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Conference Publications, 2013, 2013 (special) : 555-564. doi: 10.3934/proc.2013.2013.555

[4]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Pairs of positive solutions for $p$--Laplacian equations with combined nonlinearities. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1031-1051. doi: 10.3934/cpaa.2009.8.1031

[5]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

[6]

Wu Chen, Zhongxue Lu. Existence and nonexistence of positive solutions to an integral system involving Wolff potential. Communications on Pure & Applied Analysis, 2016, 15 (2) : 385-398. doi: 10.3934/cpaa.2016.15.385

[7]

Emil Novruzov. On existence and nonexistence of the positive solutions of non-newtonian filtration equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 719-730. doi: 10.3934/cpaa.2011.10.719

[8]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

[9]

Gabriele Bonanno, Pasquale Candito, Roberto Livrea, Nikolaos S. Papageorgiou. Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1169-1188. doi: 10.3934/cpaa.2017057

[10]

Yayun Li, Yutian Lei. On existence and nonexistence of positive solutions of an elliptic system with coupled terms. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1749-1764. doi: 10.3934/cpaa.2018083

[11]

Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080

[12]

Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911

[13]

Jean Mawhin. Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4015-4026. doi: 10.3934/dcds.2012.32.4015

[14]

Xiaohui Yu. Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros. Communications on Pure & Applied Analysis, 2013, 12 (1) : 451-459. doi: 10.3934/cpaa.2013.12.451

[15]

Guowei Dai. Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5323-5345. doi: 10.3934/dcds.2016034

[16]

Xiaohong Li, Fengquan Li. Nonexistence of solutions for nonlinear differential inequalities with gradient nonlinearities. Communications on Pure & Applied Analysis, 2012, 11 (3) : 935-943. doi: 10.3934/cpaa.2012.11.935

[17]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[18]

Rui Peng, Xianfa Song, Lei Wei. Existence, nonexistence and uniqueness of positive stationary solutions of a singular Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4489-4505. doi: 10.3934/dcds.2017192

[19]

Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051

[20]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (63)
  • HTML views (77)
  • Cited by (0)

Other articles
by authors

[Back to Top]