• Previous Article
    Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind
  • DCDS Home
  • This Issue
  • Next Article
    On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type
July 2018, 38(7): 3387-3405. doi: 10.3934/dcds.2018145

Navier-Stokes-Oseen flows in the exterior of a rotating and translating obstacle

Vietnam National University, Hanoi University of Science, Faculty of Mathematics, Mechanics, and Informatics, 334 Nguyen Trai, Hanoi, Vietnam

* Corresponding author: Trinh Viet Duoc

Received  July 2017 Revised  January 2018 Published  April 2018

Fund Project: This research is funded by the Vietnam National University, Hanoi (VNU) under project number QG.17.07

In this paper, we investigate Navier-Stokes-Oseen equation describing flows of incompressible viscous fluid passing a translating and rotating obstacle. The existence, uniqueness, and polynomial stability of bounded and almost periodic weak mild solutions to Navier-Stokes-Oseen equation in the solenoidal Lorentz space $ L^{3}_{σ, w} $ are shown. Moreover, we also prove the unique existence of time-local mild solutions to this equation in the solenoidal Lorentz spaces $ L^{3,q}_{σ} $.

Citation: Trinh Viet Duoc. Navier-Stokes-Oseen flows in the exterior of a rotating and translating obstacle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3387-3405. doi: 10.3934/dcds.2018145
References:
[1]

J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin-Heidelberg-New York, 1976. doi: 10.1007/978-3-642-66451-9.

[2]

W. Borchers and T. Miyakawa, On stability of exterior stationary Navier-Stokes flows, Acta Math., 174 (1995), 311-382. doi: 10.1007/BF02392469.

[3]

W. Borchers and H. Sohr, On the semigroup of the Stokes operator for exterior domains in $ L^p $-spaces, Math. Z., 196 (1987), 415-425. doi: 10.1007/BF01200362.

[4]

R. E. Castillo and H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer, 2016. doi: 10.1007/978-3-319-30034-4.

[5]

R. Farwig and T. Hishida, Stationary Navier-Stokes flows around a rotating obstacle, Funkc. Ekvac., 50 (2007), 371-403. doi: 10.1619/fesi.50.371.

[6]

G. P. Galdi, Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane, Discrete Continuous Dynam. Systems -S, 6 (2013), 1237-1257. doi: 10.3934/dcdss.2013.6.1237.

[7]

G. P. Galdi and A. L. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equations around a moving body, Pacific J. Math., 223 (2006), 251-267. doi: 10.2140/pjm.2006.223.251.

[8]

G. P. Galdi and A. L. Silvestre, On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force, Indiana Univ. Math. J., 58 (2009), 2805-2842. doi: 10.1512/iumj.2009.58.3758.

[9]

G. P. Galdi and A. L. Silvestre, The steady motion of a Navier-Stokes liquid around a rigid body, Arch. Rational Mech. Anal., 184 (2007), 371-400. doi: 10.1007/s00205-006-0026-4.

[10]

G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flows past a body, Arch. Ration. Mech. Anal., 172 (2004), 363-406. doi: 10.1007/s00205-004-0306-9.

[11]

M. GeissertH. Heck and M. Hieber, $ L_p $-Theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew. Math., 596 (2006), 45-62. doi: 10.1515/CRELLE.2006.051.

[12]

Y. Giga, Solutions for semilinear parabolic equations in $ L^p $ and regurlarity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212. doi: 10.1016/0022-0396(86)90096-3.

[13]

Y. GigaS. Matsui and O. Sawada, Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity, J. Math. Fluid Mech., 3 (2001), 302-315. doi: 10.1007/PL00000973.

[14]

M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 265 (2010), 481-491. doi: 10.1007/s00209-009-0525-8.

[15]

M. Hieber and O. Sawada, The Navier-Stokes equations in $ \mathbb{R}^n $ with linearly growing initial data, Arch. Ration. Mech. Anal., 175 (2005), 269-285. doi: 10.1007/s00205-004-0347-0.

[16]

T. Hishida and Y. Shibata, $ L_p - L_q $ estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle, Arch. Ration. Mech. Anal., 193 (2009), 339-421. doi: 10.1007/s00205-008-0130-8.

[17]

T. Kato, Strong $ L^p $-solutions of Navier-Stokes equations in $ \mathbb{R}^n $ with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182.

[18]

T. Kobayashi and Y. Shibata, On the Oseen equation in the three dimensional exterior domains, Math. Ann., 310 (1998), 1-45. doi: 10.1007/s002080050134.

[19]

H. Komatsu, A general interpolation theorem of Marcinkiewics type, Tôhoku Math. J., 33 (1981), 383-393. doi: 10.2748/tmj/1178229401.

[20]

M. Kyed, The existence and regularity of time-periodic solutions to the three dimensional Navier-Stokes equations in the whole plane, Nonlinearity, 27 (2014), 2909-2935. doi: 10.1088/0951-7715/27/12/2909.

[21]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge, 1982.

[22]

A. Lunardi, Interpolation Theory, Birkhäuser, 2009.

[23]

P. Maremonti, Existence and stability of time periodic solutions to the Navier-Stokes equations in exterior domains, J. Math. Sci., 93 (1999), 719-746. doi: 10.1007/BF02366850.

[24]

T. Miyakawa, On non-stationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.

[25]

T. H. NguyenT. V. DuocT. N. H. Vu and T. M. Vu, Boundedness, almost periodicity and stability of certain Navier-Stokes flows in unbounded domains, J. Differential Equations, 263 (2017), 8979-9002. doi: 10.1016/j.jde.2017.08.061.

[26]

Y. Shibata, On a $ C^0 $ semigroup associated with a modified Oseen equation with rotating effect, Adv. Math. Fluid Mech, (2010), 513-551. doi: 10.1007/978-3-642-04068-9_29.

[27]

Y. Shibata, On the Oseen semigroup with rotating effect, Funct. Anal. Evol. Equ., (2008), 595-611. doi: 10.1007/978-3-7643-7794-6_36.

[28]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, New York, Oxford, 1978.

[29]

M. Yamazaki, The Navier-Stokes equations in the weak-$ L^n $ space with time-dependent external force, Math. Ann., 317 (2000), 635-675. doi: 10.1007/PL00004418.

show all references

References:
[1]

J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin-Heidelberg-New York, 1976. doi: 10.1007/978-3-642-66451-9.

[2]

W. Borchers and T. Miyakawa, On stability of exterior stationary Navier-Stokes flows, Acta Math., 174 (1995), 311-382. doi: 10.1007/BF02392469.

[3]

W. Borchers and H. Sohr, On the semigroup of the Stokes operator for exterior domains in $ L^p $-spaces, Math. Z., 196 (1987), 415-425. doi: 10.1007/BF01200362.

[4]

R. E. Castillo and H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer, 2016. doi: 10.1007/978-3-319-30034-4.

[5]

R. Farwig and T. Hishida, Stationary Navier-Stokes flows around a rotating obstacle, Funkc. Ekvac., 50 (2007), 371-403. doi: 10.1619/fesi.50.371.

[6]

G. P. Galdi, Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane, Discrete Continuous Dynam. Systems -S, 6 (2013), 1237-1257. doi: 10.3934/dcdss.2013.6.1237.

[7]

G. P. Galdi and A. L. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equations around a moving body, Pacific J. Math., 223 (2006), 251-267. doi: 10.2140/pjm.2006.223.251.

[8]

G. P. Galdi and A. L. Silvestre, On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force, Indiana Univ. Math. J., 58 (2009), 2805-2842. doi: 10.1512/iumj.2009.58.3758.

[9]

G. P. Galdi and A. L. Silvestre, The steady motion of a Navier-Stokes liquid around a rigid body, Arch. Rational Mech. Anal., 184 (2007), 371-400. doi: 10.1007/s00205-006-0026-4.

[10]

G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flows past a body, Arch. Ration. Mech. Anal., 172 (2004), 363-406. doi: 10.1007/s00205-004-0306-9.

[11]

M. GeissertH. Heck and M. Hieber, $ L_p $-Theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew. Math., 596 (2006), 45-62. doi: 10.1515/CRELLE.2006.051.

[12]

Y. Giga, Solutions for semilinear parabolic equations in $ L^p $ and regurlarity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212. doi: 10.1016/0022-0396(86)90096-3.

[13]

Y. GigaS. Matsui and O. Sawada, Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity, J. Math. Fluid Mech., 3 (2001), 302-315. doi: 10.1007/PL00000973.

[14]

M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 265 (2010), 481-491. doi: 10.1007/s00209-009-0525-8.

[15]

M. Hieber and O. Sawada, The Navier-Stokes equations in $ \mathbb{R}^n $ with linearly growing initial data, Arch. Ration. Mech. Anal., 175 (2005), 269-285. doi: 10.1007/s00205-004-0347-0.

[16]

T. Hishida and Y. Shibata, $ L_p - L_q $ estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle, Arch. Ration. Mech. Anal., 193 (2009), 339-421. doi: 10.1007/s00205-008-0130-8.

[17]

T. Kato, Strong $ L^p $-solutions of Navier-Stokes equations in $ \mathbb{R}^n $ with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182.

[18]

T. Kobayashi and Y. Shibata, On the Oseen equation in the three dimensional exterior domains, Math. Ann., 310 (1998), 1-45. doi: 10.1007/s002080050134.

[19]

H. Komatsu, A general interpolation theorem of Marcinkiewics type, Tôhoku Math. J., 33 (1981), 383-393. doi: 10.2748/tmj/1178229401.

[20]

M. Kyed, The existence and regularity of time-periodic solutions to the three dimensional Navier-Stokes equations in the whole plane, Nonlinearity, 27 (2014), 2909-2935. doi: 10.1088/0951-7715/27/12/2909.

[21]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge, 1982.

[22]

A. Lunardi, Interpolation Theory, Birkhäuser, 2009.

[23]

P. Maremonti, Existence and stability of time periodic solutions to the Navier-Stokes equations in exterior domains, J. Math. Sci., 93 (1999), 719-746. doi: 10.1007/BF02366850.

[24]

T. Miyakawa, On non-stationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.

[25]

T. H. NguyenT. V. DuocT. N. H. Vu and T. M. Vu, Boundedness, almost periodicity and stability of certain Navier-Stokes flows in unbounded domains, J. Differential Equations, 263 (2017), 8979-9002. doi: 10.1016/j.jde.2017.08.061.

[26]

Y. Shibata, On a $ C^0 $ semigroup associated with a modified Oseen equation with rotating effect, Adv. Math. Fluid Mech, (2010), 513-551. doi: 10.1007/978-3-642-04068-9_29.

[27]

Y. Shibata, On the Oseen semigroup with rotating effect, Funct. Anal. Evol. Equ., (2008), 595-611. doi: 10.1007/978-3-7643-7794-6_36.

[28]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, New York, Oxford, 1978.

[29]

M. Yamazaki, The Navier-Stokes equations in the weak-$ L^n $ space with time-dependent external force, Math. Ann., 317 (2000), 635-675. doi: 10.1007/PL00004418.

[1]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[2]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[3]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[4]

Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215

[5]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[6]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[7]

Gaston N'Guerekata. On weak-almost periodic mild solutions of some linear abstract differential equations. Conference Publications, 2003, 2003 (Special) : 672-677. doi: 10.3934/proc.2003.2003.672

[8]

Reinhard Farwig, Ronald B. Guenther, Enrique A. Thomann, Šárka Nečasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 511-529. doi: 10.3934/dcds.2014.34.511

[9]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[10]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[11]

Giovanni P. Galdi. Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1237-1257. doi: 10.3934/dcdss.2013.6.1237

[12]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[13]

Shuguang Shao, Shu Wang, Wen-Qing Xu, Bin Han. Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle. Kinetic & Related Models, 2016, 9 (4) : 767-776. doi: 10.3934/krm.2016015

[14]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[15]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611

[16]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011

[17]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171

[18]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[19]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018137

[20]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

2016 Impact Factor: 1.099

Article outline

[Back to Top]