July 2018, 38(7): 3189-3221. doi: 10.3934/dcds.2018139

Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families

1. 

Department of Mathematics, Brooklyn College of CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA

2. 

Ph.D. Program in Mathematics, Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA

3. 

Mathematics Department, BMCC of CUNY, 199 Chambers Street, New York, NY 10007, USA

4. 

College of Mathematics and Econometrics, Hunan University, Changsha 410082, China

* Corresponding author: Yingqing Xiao

Received  February 2017 Revised  November 2017 Published  April 2018

Fund Project: The first author was supported by a Cycle 48 PSC-CUNY Research Award, and the third author was supported by the National Natural Science Foundation of China under grant Nos. 11301165, 11371126 and 11571099

In [6], regularly ramified rational maps are constructed and Julia sets of these maps in some one-parameter families are explored through computer-generated pictures. It is observed that they have classifications similar to the Julia sets of maps in the families $ f_n^{c}(z) = z^n+\frac{c}{z^n}$, where $ n≥ 2$ and $ c$ is a complex number. A new type of Julia set is also presented, which has not appeared in the literature. We call such a Julia set an exploded McMullen necklace. We prove in this paper: if a map $ f$ in the one-parameter families given in [6] has a superattracting fixed point of order greater than 2, then its Julia set $ J(f)$ is either connected, a Cantor set, or a McMullen necklace (either exploded or not); if such a map $ f$ has a superattracting fixed point of order equal to 2, then $ J(f)$ is either connected or a Cantor set.

Citation: Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139
References:
[1]

A. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-4422-6.

[2]

R. L. Devaney, Dynamics of $ z^n+λ /z^n$; Why is the case $ n = 2$ crazy, Contemp. Math., 573 (2012), 49-65. doi: 10.1090/conm/573/11379.

[3]

R. L. DevaneyD. M. Look and D. Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana University Mathematics Journal, 54 (2005), 1621-1634. doi: 10.1512/iumj.2005.54.2615.

[4]

R. L. Devaney and E. D. Russell, Connectivity of Julia sets for singularly perturbed rational maps, in Chaos, CNN, Memristors and Beyond, World Scientific, (2013), 239--245. doi: 10.1142/9789814434805_0018.

[5]

H. M. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag, 1980.

[6]

J. HuF. G. Jimenez and O. Muzician, Rational maps with half symmetries, Julia sets, and Multibrot sets in parameter planes, Contemp. Math., 573 (2012), 119-146. doi: 10.1090/conm/573/11393.

[7]

C. McMullen, Automorphisms of rational maps, in Holomorphic Functions and Moduli, Vol. Ⅰ (Berkeley, CA, 1986), 31-60, Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988. doi: 10.1007/978-1-4613-9602-4_3.

[8]

J. Milnor, Dynamics in one Complex Variable - Introductory Lectures, Friedr. Vieweg & Sohn, Braunschweig, 1999.

[9]

——, On rational maps with two critical points, Experimental Mathematics, 9 (2000), 481-522. doi: 10.1080/10586458.2000.10504657.

[10]

S. Morosawa, Julia sets of sub-hyperbolic rational functions, Complex Variables Theory and Application, 41 (2000), 151-162. doi: 10.1080/17476930008815244.

[11]

M. Stiemer, Rational maps with Fatou components of arbitrary connectivity number, Computational Methods and Function Theory, 7 (2007), 415-427. doi: 10.1007/BF03321654.

[12]

G. T. Whyburn, Topological characterization of the Sierpinski curve, Fund. Math., 45 (1958), 320-324. doi: 10.4064/fm-45-1-320-324.

[13]

Y. Xiao and W. Qiu, The rational maps $ F_{λ }(z)=z^m+\frac{λ }{z^d}$ have no Herman rings, Proc. Indian Acad. Sci. (Math. Sci.), 120 (2010), 403-407. doi: 10.1007/s12044-010-0044-x.

[14]

Y. XiaoW. Qiu and Y. Yin, On the dynamics of generalized McMullen maps, Ergod. Th. & Dynam. Sys., 34 (2014), 2093-2112. doi: 10.1017/etds.2013.21.

[15]

Y. Xiao and F. Yang, Singular perturbations of the unicritical polynomials with two parameters, Ergod. Th. & Dynam. Sys., 37 (2017), 1997-2016. doi: 10.1017/etds.2015.114.

show all references

References:
[1]

A. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-4422-6.

[2]

R. L. Devaney, Dynamics of $ z^n+λ /z^n$; Why is the case $ n = 2$ crazy, Contemp. Math., 573 (2012), 49-65. doi: 10.1090/conm/573/11379.

[3]

R. L. DevaneyD. M. Look and D. Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana University Mathematics Journal, 54 (2005), 1621-1634. doi: 10.1512/iumj.2005.54.2615.

[4]

R. L. Devaney and E. D. Russell, Connectivity of Julia sets for singularly perturbed rational maps, in Chaos, CNN, Memristors and Beyond, World Scientific, (2013), 239--245. doi: 10.1142/9789814434805_0018.

[5]

H. M. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag, 1980.

[6]

J. HuF. G. Jimenez and O. Muzician, Rational maps with half symmetries, Julia sets, and Multibrot sets in parameter planes, Contemp. Math., 573 (2012), 119-146. doi: 10.1090/conm/573/11393.

[7]

C. McMullen, Automorphisms of rational maps, in Holomorphic Functions and Moduli, Vol. Ⅰ (Berkeley, CA, 1986), 31-60, Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988. doi: 10.1007/978-1-4613-9602-4_3.

[8]

J. Milnor, Dynamics in one Complex Variable - Introductory Lectures, Friedr. Vieweg & Sohn, Braunschweig, 1999.

[9]

——, On rational maps with two critical points, Experimental Mathematics, 9 (2000), 481-522. doi: 10.1080/10586458.2000.10504657.

[10]

S. Morosawa, Julia sets of sub-hyperbolic rational functions, Complex Variables Theory and Application, 41 (2000), 151-162. doi: 10.1080/17476930008815244.

[11]

M. Stiemer, Rational maps with Fatou components of arbitrary connectivity number, Computational Methods and Function Theory, 7 (2007), 415-427. doi: 10.1007/BF03321654.

[12]

G. T. Whyburn, Topological characterization of the Sierpinski curve, Fund. Math., 45 (1958), 320-324. doi: 10.4064/fm-45-1-320-324.

[13]

Y. Xiao and W. Qiu, The rational maps $ F_{λ }(z)=z^m+\frac{λ }{z^d}$ have no Herman rings, Proc. Indian Acad. Sci. (Math. Sci.), 120 (2010), 403-407. doi: 10.1007/s12044-010-0044-x.

[14]

Y. XiaoW. Qiu and Y. Yin, On the dynamics of generalized McMullen maps, Ergod. Th. & Dynam. Sys., 34 (2014), 2093-2112. doi: 10.1017/etds.2013.21.

[15]

Y. Xiao and F. Yang, Singular perturbations of the unicritical polynomials with two parameters, Ergod. Th. & Dynam. Sys., 37 (2017), 1997-2016. doi: 10.1017/etds.2015.114.

Figure 1.  Three Platonic solids.
Figure 2.  Four types of Julia sets for maps in the family $f_{(2, 4)}^{\lambda }$. In (a), a Cantor set with $\lambda = 2$; in (b), a non-escaping case of $v_{\lambda }$ with $\lambda = 3+3i$; in (c), a Sierpinski curve with $\lambda = 5$; and in (d), a McMullen necklace with $\lambda = 13$.
Figure 3.  Three types of Julia sets for maps in the family $f_{(2, 2)}^{\lambda }$. In (a), a Cantor set with $\lambda = 1$; in (b), a non-escaping case of $v_{\lambda }$ with $\lambda = 3+5i$; in (c) and (d), Sierpinski curves with $\lambda = -4$ and $\lambda = 10$ respectively.
Figure 4.  Three types of Julia sets for maps in the family $h_{(2, 4)}^{\lambda }$. In (a), $\lambda = 2$, a Cantor set; in (b), $\lambda = 3.467$, an approximation of a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Julia set; in (c), $\lambda = 7$, a Sierpinski curve; in (d), $\lambda = -7$, a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Fatou set.
Figure 5.  Four types of Julia sets for maps in the family $f_{(2, 3, 4)}^{\lambda }$. In (a), $\lambda = 20$, a Cantor set; in (b), $\lambda = 40+40i$, a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Fatou set; in (c), $\lambda = 500$, a Sierpinski curve; in (d) $\lambda = 1125$, an approximation of a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Julia set; in (e), $\lambda = 1500$, an exploded McMullen necklace; (f) is a zoom of (e) in the middle.
Figure 6.  Three types of Julia sets for maps in the family $h_{(2, 3, 4)}^{\lambda }$ (Note that $\infty $ is fixed). In (a), $\lambda = 1000$, a Cantor set; in (b), $\lambda = 890.5$, an approximation of a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Julia set; in (c), $\lambda = 380i$, a non-escaping case of $v_{\lambda}$ with $v_{\lambda}$ in the Fatou set; in (d), $\lambda = 290$, a Sierpinski curve.
Figure 7.  Here $B = B(0)$ and $T = B(\infty )$; the shadowed domain is an illustration for the domain $f_{\lambda }^{-1}(B(\infty ))$ proved in Lemma 3.16; $A_{in}$ and $A_{out}$ stand for the two annuli used in the proof of Proposition 3.20.
Figure 8.  Four types of Julia sets for maps in the family $f_{(2, 3, 5)}^{\lambda }$. In (a), $\lambda = 200$, a Cantor set; in (b), $\lambda = 500$, a Sierpinski curve; in (c), $\lambda = 6000$, a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Fatou set; in (d), $\lambda = 20000$, an approximation of a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Julia set; in (e), $\lambda = 30000$, an exploded McMullen necklace; (f) is a zoom of (e) in the middle.
Figure 9.  Three types of Julia sets for maps in the family $h_{(2, 3, 5)}^{\lambda }$ (Note that $\infty $ is fixed). In (a), $\lambda = 15000-30000i$, a Cantor set; in (b), $\lambda = 12580-19760i$, an approximation of a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Julia set; in (c), $\lambda = 9000+5000i$, a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Fatou set; in (d), $\lambda = 3500-6000i$, a Sierpinski curve.
Figure 10.  Four types of Julia sets for maps in the family $f_{(2, 3, 3)}^{\lambda }$. In (a), $\lambda = 10$, a Cantor set; in (b), $\lambda = -200$, a Sierpinski curve; in (c), $\lambda = 30$, a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Fatou set; in (d), $\lambda = 290$, an approximation of a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Julia set; in (e), $\lambda = 500$, an exploded McMullen necklace; (f) is a zoom of (e) in the middle. The black point in (a) or (f) stands for the origin, which is in the Fatou set.
Figure 11.  Three types of Julia sets for maps in the family $h_{(2, 3, 3)}^{\lambda }$. In (a), $\lambda = 20i$, a Cantor set; in (b), $\lambda = 27.2899i$, an approximation of a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Julia set; in (c), $\lambda = 60$, a non-escaping case of $v_{\lambda }$ with $v_{\lambda }$ in the Fatou set; in (d), $\lambda = 120i$, a Sierpinski curve.
[1]

Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375

[2]

Wenyu Pan. Effective equidistribution of circles in the limit sets of Kleinian groups. Journal of Modern Dynamics, 2017, 11: 189-217. doi: 10.3934/jmd.2017009

[3]

S. R. Bullett and W. J. Harvey. Mating quadratic maps with Kleinian groups via quasiconformal surgery. Electronic Research Announcements, 2000, 6: 21-30.

[4]

Hiroki Sumi. Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1205-1244. doi: 10.3934/dcds.2011.29.1205

[5]

Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499

[6]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[7]

Hiroki Sumi, Mariusz Urbański. Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 313-363. doi: 10.3934/dcds.2011.30.313

[8]

Guizhen Cui, Wenjuan Peng, Lei Tan. On the topology of wandering Julia components. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 929-952. doi: 10.3934/dcds.2011.29.929

[9]

Canela Jordi. Singular perturbations of Blaschke products and connectivity of Fatou components. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3567-3585. doi: 10.3934/dcds.2017153

[10]

Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321

[11]

Koh Katagata. Quartic Julia sets including any two copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2103-2112. doi: 10.3934/dcds.2016.36.2103

[12]

Robert L. Devaney, Daniel M. Look. Buried Sierpinski curve Julia sets. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1035-1046. doi: 10.3934/dcds.2005.13.1035

[13]

Danilo Antonio Caprio. A class of adding machines and Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5951-5970. doi: 10.3934/dcds.2016061

[14]

Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801

[15]

Luiz Henrique de Figueiredo, Diego Nehab, Jorge Stolfi, João Batista S. de Oliveira. Rigorous bounds for polynomial Julia sets. Journal of Computational Dynamics, 2016, 3 (2) : 113-137. doi: 10.3934/jcd.2016006

[16]

Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363

[17]

Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016

[18]

Peter Müller, Gábor P. Nagy. On the non-existence of sharply transitive sets of permutations in certain finite permutation groups. Advances in Mathematics of Communications, 2011, 5 (2) : 303-308. doi: 10.3934/amc.2011.5.303

[19]

Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583

[20]

Tarik Aougab, Stella Chuyue Dong, Robert S. Strichartz. Laplacians on a family of quadratic Julia sets II. Communications on Pure & Applied Analysis, 2013, 12 (1) : 1-58. doi: 10.3934/cpaa.2013.12.1

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (98)
  • HTML views (237)
  • Cited by (0)

Other articles
by authors

[Back to Top]