June 2018, 38(6): 3033-3054. doi: 10.3934/dcds.2018132

A singular cahn-hilliard-oono phase-field system with hereditary memory

1. 

Politecnico di Milano, Dipartimento di Matematica "F. Brioschi", Via Bonardi 9, I-20133 Milano, Italy

2. 

Università di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Via Campi 213/B, I-41125 Modena, Italy

3. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, Boulevard Marie et Pierre Curie -Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France

4. 

Xiamen University, School of Mathematical Sciences, 361005 Xiamen, Fujian, China

* Corresponding author: Stefania Gatti

Received  September 2017 Published  April 2018

We consider a phase-field system modeling phase transition phenomena, where the Cahn-Hilliard-Oono equation for the order parameter is coupled with the Coleman-Gurtin heat law for the temperature. The former suitably describes both local and nonlocal (long-ranged) interactions in the material undergoing phase-separation, while the latter takes into account thermal memory effects. We study the well-posedness and longtime behavior of the corresponding dynamical system in the history space setting, for a class of physically relevant and singular potentials. Besides, we investigate the regularization properties of the solutions and, for sufficiently smooth data, we establish the strict separation property from the pure phases.

Citation: Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132
References:
[1]

D. Brochet, Maximal attractor and inertial sets for some second and fourth order phase field models, in Pitman Res. Notes Math. Ser. , Longman Sci. Tech., Harlow, 296 (1993), 77–85.

[2]

D. BrochetD. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Diff. Eqns., 1 (1996), 547-578.

[3]

G. Caginalp, A conserved phase field system; implications for kinetic undercooling, Phys. Rev. B, 38 (1988), 789-791.

[4]

G. Caginalp, The dynamics of a conserved phase-field system: Stefan-like, Hele-Shaw and Cahn-Hilliard models as asymptotic limits, IMA J. Appl. Math., 44 (1990), 77-94.

[5]

J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801.

[6]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.

[7]

B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.

[8]

M. Conti and A. Giorgini, The three-dimensional Cahn-Hilliard-Brinkman system with unmatched viscosities, preprint.

[9]

M. ContiV. Pata and M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J., 55 (2006), 169-215.

[10]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.

[11]

C. G. GalA. Giorgini and M. Grasselli, The nonlocal Cahn-Hilliard equation with singular potential: Well-posedness, regularity and strict separation property, J. Differential Equations, 263 (2017), 5253-5297.

[12]

S. GattiM. Grasselli and V. Pata, Exponential Attractors for a conserved phase-field system with memory, Phys. D, 189 (2004), 31-48.

[13]

S. GattiA. MiranvilleV. Pata and S. Zelik, Continuous families of exponential attractors for singularly perturbed equations with memory, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 329-366.

[14]

C. GiorgiM. Grasselli and V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana Univ. Math. J., 48 (1999), 1395-1445.

[15]

A. GiorginiM. Grasselli and A. Miranville, The Cahn-Hilliard-Oono equation with singular potential, Math. Models Methods Appl. Sci., 27 (2017), 2485-2510.

[16]

M. Grasselli and V. Pata, Attractors of phase-field systems with memory, in Mathematical methods and models in phase transitions, (eds. A. Miranville), Nova Science Publishers, 2005,157–175.

[17]

M. GrasselliV. Pata and F. M. Vegni, Longterm dynamics of a conserved phase-field model with memory, Asymptot. Anal., 33 (2003), 261-320.

[18]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126.

[19]

A. Haraux, Systémes Dynamiques Dissipatifs et Applications, Recherches en Mathématiques Appliquées, Vol. 17, Masson, Paris, 1991.

[20]

A. Miranville, Asymptotic behavior of the Cahn-Hilliard-Oono equation, J. Appl. Anal. Comput., 1 (2011), 523-536.

[21]

A. Miranville, On the conserved phase-field system, J. Math. Anal. Appl., 400 (2013), 143-152.

[22]

A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Math., 2 (2017), 479-544.

[23]

A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582.

[24]

Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839.

[25]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486.

[26]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.

[27]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York, 1997.

[28]

S. Villain-Guillot, Phases Modulées et Dynamique de Cahn-Hilliard, Habilitation thesis, Université Bordeaux I, 2010.

show all references

References:
[1]

D. Brochet, Maximal attractor and inertial sets for some second and fourth order phase field models, in Pitman Res. Notes Math. Ser. , Longman Sci. Tech., Harlow, 296 (1993), 77–85.

[2]

D. BrochetD. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Diff. Eqns., 1 (1996), 547-578.

[3]

G. Caginalp, A conserved phase field system; implications for kinetic undercooling, Phys. Rev. B, 38 (1988), 789-791.

[4]

G. Caginalp, The dynamics of a conserved phase-field system: Stefan-like, Hele-Shaw and Cahn-Hilliard models as asymptotic limits, IMA J. Appl. Math., 44 (1990), 77-94.

[5]

J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801.

[6]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.

[7]

B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.

[8]

M. Conti and A. Giorgini, The three-dimensional Cahn-Hilliard-Brinkman system with unmatched viscosities, preprint.

[9]

M. ContiV. Pata and M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J., 55 (2006), 169-215.

[10]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.

[11]

C. G. GalA. Giorgini and M. Grasselli, The nonlocal Cahn-Hilliard equation with singular potential: Well-posedness, regularity and strict separation property, J. Differential Equations, 263 (2017), 5253-5297.

[12]

S. GattiM. Grasselli and V. Pata, Exponential Attractors for a conserved phase-field system with memory, Phys. D, 189 (2004), 31-48.

[13]

S. GattiA. MiranvilleV. Pata and S. Zelik, Continuous families of exponential attractors for singularly perturbed equations with memory, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 329-366.

[14]

C. GiorgiM. Grasselli and V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana Univ. Math. J., 48 (1999), 1395-1445.

[15]

A. GiorginiM. Grasselli and A. Miranville, The Cahn-Hilliard-Oono equation with singular potential, Math. Models Methods Appl. Sci., 27 (2017), 2485-2510.

[16]

M. Grasselli and V. Pata, Attractors of phase-field systems with memory, in Mathematical methods and models in phase transitions, (eds. A. Miranville), Nova Science Publishers, 2005,157–175.

[17]

M. GrasselliV. Pata and F. M. Vegni, Longterm dynamics of a conserved phase-field model with memory, Asymptot. Anal., 33 (2003), 261-320.

[18]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126.

[19]

A. Haraux, Systémes Dynamiques Dissipatifs et Applications, Recherches en Mathématiques Appliquées, Vol. 17, Masson, Paris, 1991.

[20]

A. Miranville, Asymptotic behavior of the Cahn-Hilliard-Oono equation, J. Appl. Anal. Comput., 1 (2011), 523-536.

[21]

A. Miranville, On the conserved phase-field system, J. Math. Anal. Appl., 400 (2013), 143-152.

[22]

A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Math., 2 (2017), 479-544.

[23]

A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582.

[24]

Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839.

[25]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486.

[26]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.

[27]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York, 1997.

[28]

S. Villain-Guillot, Phases Modulées et Dynamique de Cahn-Hilliard, Habilitation thesis, Université Bordeaux I, 2010.

[1]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[2]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[3]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[4]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[5]

Irena PawŁow. The Cahn--Hilliard--de Gennes and generalized Penrose--Fife models for polymer phase separation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2711-2739. doi: 10.3934/dcds.2015.35.2711

[6]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[7]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[8]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[9]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[10]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[11]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[12]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[13]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

[14]

S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 1019-1029. doi: 10.3934/dcds.2005.12.1019

[15]

Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391

[16]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[17]

Francesco Della Porta, Maurizio Grasselli. Convective nonlocal Cahn-Hilliard equations with reaction terms. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1529-1553. doi: 10.3934/dcdsb.2015.20.1529

[18]

Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405

[19]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[20]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (45)
  • HTML views (117)
  • Cited by (0)

Other articles
by authors

[Back to Top]