December  2018, 38(12): 5963-5991. doi: 10.3934/dcds.2018131

Attainability of the fractional hardy constant with nonlocal mixed boundary conditions: Applications

1. 

Laboratoire d'Analyse Nonlinéaire et Mathématiques Appliquées, Université Abou Bakr Belkaïd, Tlemcen, Tlemcen 13000, Algeria

2. 

Département de Mathématiques, Université Ibn Khaldoun, Tiaret, Tiaret 14000, Algeria

3. 

Departamento de Matemáticas, Universidad Autonoma de Madrid, 28049 Madrid, Spain

* Corresponding author

To Rafa de la Llave in his 60th birthday, with our best wishes.

Received  September 2017 Revised  January 2018 Published  April 2018

Fund Project: This work is partially supported by research grants MTM2013-40846-P and MTM2016-80474-P, MINECO, Spain

The first goal of this paper is to study necessary and sufficient conditions to obtain the attainability of the fractional Hardy inequality
$\Lambda_{N}\equiv \Lambda_{N}(\Omega): = \inf\limits_{\{\varphi\in \mathbb{E}^{s}(\Omega, D), \varphi \ne0\}}\dfrac{\frac{a_{d, s}}{2}\displaystyle\int_{\mathbb R^d}\int_{\mathbb R^d}\dfrac{|\varphi(x)-\phi(y)|^{2}}{|x-y|^{d+2s}}dx dy}{\displaystyle\int_{\Omega}\frac{\varphi^2}{|x|^{2s}}\, dx}, $
where
$\Omega$
is a bounded domain of
$\mathbb R^d$
,
$0<s<1$
,
$D\subset \mathbb R^d\setminus \Omega$
a nonempty open set,
$N = (\mathbb R^d\setminus \Omega)\setminus\overline{D}$
and
$\mathbb{E}^{s}(\Omega, D) = \{ u \in H^s(\mathbb R^d):\, u = 0 \text{ in } D\}.$
The second aim of the paper is to study the mixed Dirichlet-Neumann boundary problem associated to the minimization problem and related properties; precisely, to study semilinear elliptic problem for the fractional Laplacian, that is,
${P_\lambda } \equiv \left\{ {\begin{array}{*{20}{l}}{{{\left( { - \Delta } \right)}^s}u\;\;\; = \;\;\;\lambda \frac{u}{{|x{|^{2s}}}} + {u^p}}&{{\rm{in}}\;\Omega ,}\\{\;\;\;\;\;\;\;\;\;u\;\;\; > \;\;\;0}&{{\rm{in}}\;\Omega ,}\\{\;\;\;\;\;\;{{\cal B}_s}u\;\;\;: = \;\;u{\chi _D} + {{\cal N}_s}u{\chi _N} = 0}&{{\rm{in}}\;{{\mathbb {R}}^d}\backslash \Omega ,}\end{array}} \right.$
with
$N$
and
$D$
open sets in
$\mathbb R^{d}\backslash\Omega$
such that
$N \cap D = \emptyset$
and
$\overline{N}\cup \overline{D} = \mathbb R^{d}\backslash\Omega$
,
$d>2s$
,
$\lambda> 0$
and
$<p\le 2_s^*-1_s^* = \frac{2d}{d-2s}$
. We emphasize that the nonlinear term can be critical.
The operators
$(-\Delta)^s $
, fractional Laplacian, and
$\mathcal{N}_{s}$
, nonlocal Neumann condition, are defined below in (7) and (8) respectively.
Citation: Boumediene Abdellaoui, Ahmed Attar, Abdelrazek Dieb, Ireneo Peral. Attainability of the fractional hardy constant with nonlocal mixed boundary conditions: Applications. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 5963-5991. doi: 10.3934/dcds.2018131
References:
[1]

B. Abdellaoui and R. Bentifour, Caffarelli-Kohn-Nirenberg Type Inequalities of Fractional Order and Applications, J. Funct. Anal., 272 (2017), 3998-4029. doi: 10.1016/j.jfa.2017.02.007. Google Scholar

[2]

B. AbdellaouiA. Dieb and E. Valdinoci, A nonlocal concave-convex problem with nonlocal mixed boundary data, Comm. on Pure Appl. Analysis, 17 (2018), 1103-1120. doi: 10.3934/cpaa.2018053. Google Scholar

[3]

B. AbdellaouiE. Colorado and I. Peral, Some remarks on elliptic equations with singular potential and mixed boundary conditions, Advanced Nonlinear Studies, 4 (2004), 503-533. Google Scholar

[4]

B. AbdellaouiE. Colorado and I. Peral, Effect on the boundary conditions in the behaviour of the optimal constant of some Caffarelli-Kohn-Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems, Advances in Differential Equations, 11 (2006), 667-720. Google Scholar

[5]

B. AbdellaouiM. MedinaI. Peral and A. Primo, A note on the effect of the Hardy potential in some Calderon-Zygmund properties for the fractional Laplacian, J. Differential Equations, 260 (2016), 8160-8206. doi: 10.1016/j.jde.2016.02.016. Google Scholar

[6]

B. AbdellaouiM. MedinaI. Peral and A. Primo, Optimal results for the fractional heat equation involving the Hardy potential, Nonlinear Anal., 140 (2016), 166-207. doi: 10.1016/j.na.2016.03.013. Google Scholar

[7]

B. AbdellaouiI. Peral and A. Primo, A remark on the fractional Hardy inequality with a remainder term, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), 299-303. doi: 10.1016/j.crma.2014.02.003. Google Scholar

[8]

B. Barrios and M. Medina, Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions. arXiv: 1607.01505.Google Scholar

[9]

W. Beckner, Pitt's inequality and the uncertainty principle, Proceedings of the American Mathematical Society, 123 (1995), 1897-1905. Google Scholar

[10]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. Google Scholar

[11]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405. Google Scholar

[12]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer; Unione Matematica Italiana, Bologna, 2016. Google Scholar

[13]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025. Google Scholar

[14]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[16]

S. Dipierro, L. Montoro, I. Peral and D. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differential Equations, 55 (2016), Art. 99, 29 pp. Google Scholar

[17]

S. DipierroX. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam, 33 (2017), 377-416. doi: 10.4171/RMI/942. Google Scholar

[18]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. doi: 10.1016/0022-247X(74)90025-0. Google Scholar

[19]

F. Ferrari and I. Verbitsky, Radial fractional Laplace operators and Hessian inequalities, J. Differential Equations, 253 (2012), 244-272. doi: 10.1016/j.jde.2012.03.024. Google Scholar

[20]

R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, Journal of Functional Analysis, 255 (2008), 3407-3430. doi: 10.1016/j.jfa.2008.05.015. Google Scholar

[21]

R. FrankE. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. So, 21 (2008), 925-950. Google Scholar

[22]

G. Grubb, Local and nonlocal boundary conditions for $mu$-transmission and fractional order elliptic pseudodifferential operators, Anal. PDE, 7 (2014), 1649-1682. doi: 10.2140/apde.2014.7.1649. Google Scholar

[23]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Commun. math. Phys., 53 (1977), 285-294. Google Scholar

[24]

N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Google Scholar

[25]

T. Leonori, M. Medina, I. Peral, A. Primo and F. Soria, Principal eigenvalue of mixed problem for the fractional Laplacian: Moving the boundary conditions, J. Differential Equations, 265 (2018), no. 2, 593-619. doi: 10.1016/j.jde.2018.03.001. Google Scholar

[26]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068. doi: 10.3934/dcds.2015.35.6031. Google Scholar

[27]

G. Molica Bisci, V. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016. Google Scholar

[28]

A. C. Ponce, Elliptic PDE's, Measures and Capacities, Tracts in Mathematics 23, European Mathematical Society (EMS), Zurich, 2016. Google Scholar

[29]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Analysis, 7 (1971), 487-513. doi: 10.1016/0022-1236(71)90030-9. Google Scholar

[30]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102. Google Scholar

[31]

E. M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514. Google Scholar

[32]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264. Google Scholar

[33]

D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Functional Analysis, 168 (1999), 121-144. doi: 10.1006/jfan.1999.3462. Google Scholar

show all references

References:
[1]

B. Abdellaoui and R. Bentifour, Caffarelli-Kohn-Nirenberg Type Inequalities of Fractional Order and Applications, J. Funct. Anal., 272 (2017), 3998-4029. doi: 10.1016/j.jfa.2017.02.007. Google Scholar

[2]

B. AbdellaouiA. Dieb and E. Valdinoci, A nonlocal concave-convex problem with nonlocal mixed boundary data, Comm. on Pure Appl. Analysis, 17 (2018), 1103-1120. doi: 10.3934/cpaa.2018053. Google Scholar

[3]

B. AbdellaouiE. Colorado and I. Peral, Some remarks on elliptic equations with singular potential and mixed boundary conditions, Advanced Nonlinear Studies, 4 (2004), 503-533. Google Scholar

[4]

B. AbdellaouiE. Colorado and I. Peral, Effect on the boundary conditions in the behaviour of the optimal constant of some Caffarelli-Kohn-Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems, Advances in Differential Equations, 11 (2006), 667-720. Google Scholar

[5]

B. AbdellaouiM. MedinaI. Peral and A. Primo, A note on the effect of the Hardy potential in some Calderon-Zygmund properties for the fractional Laplacian, J. Differential Equations, 260 (2016), 8160-8206. doi: 10.1016/j.jde.2016.02.016. Google Scholar

[6]

B. AbdellaouiM. MedinaI. Peral and A. Primo, Optimal results for the fractional heat equation involving the Hardy potential, Nonlinear Anal., 140 (2016), 166-207. doi: 10.1016/j.na.2016.03.013. Google Scholar

[7]

B. AbdellaouiI. Peral and A. Primo, A remark on the fractional Hardy inequality with a remainder term, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), 299-303. doi: 10.1016/j.crma.2014.02.003. Google Scholar

[8]

B. Barrios and M. Medina, Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions. arXiv: 1607.01505.Google Scholar

[9]

W. Beckner, Pitt's inequality and the uncertainty principle, Proceedings of the American Mathematical Society, 123 (1995), 1897-1905. Google Scholar

[10]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. Google Scholar

[11]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405. Google Scholar

[12]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer; Unione Matematica Italiana, Bologna, 2016. Google Scholar

[13]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025. Google Scholar

[14]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[16]

S. Dipierro, L. Montoro, I. Peral and D. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differential Equations, 55 (2016), Art. 99, 29 pp. Google Scholar

[17]

S. DipierroX. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam, 33 (2017), 377-416. doi: 10.4171/RMI/942. Google Scholar

[18]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. doi: 10.1016/0022-247X(74)90025-0. Google Scholar

[19]

F. Ferrari and I. Verbitsky, Radial fractional Laplace operators and Hessian inequalities, J. Differential Equations, 253 (2012), 244-272. doi: 10.1016/j.jde.2012.03.024. Google Scholar

[20]

R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, Journal of Functional Analysis, 255 (2008), 3407-3430. doi: 10.1016/j.jfa.2008.05.015. Google Scholar

[21]

R. FrankE. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. So, 21 (2008), 925-950. Google Scholar

[22]

G. Grubb, Local and nonlocal boundary conditions for $mu$-transmission and fractional order elliptic pseudodifferential operators, Anal. PDE, 7 (2014), 1649-1682. doi: 10.2140/apde.2014.7.1649. Google Scholar

[23]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Commun. math. Phys., 53 (1977), 285-294. Google Scholar

[24]

N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Google Scholar

[25]

T. Leonori, M. Medina, I. Peral, A. Primo and F. Soria, Principal eigenvalue of mixed problem for the fractional Laplacian: Moving the boundary conditions, J. Differential Equations, 265 (2018), no. 2, 593-619. doi: 10.1016/j.jde.2018.03.001. Google Scholar

[26]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068. doi: 10.3934/dcds.2015.35.6031. Google Scholar

[27]

G. Molica Bisci, V. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016. Google Scholar

[28]

A. C. Ponce, Elliptic PDE's, Measures and Capacities, Tracts in Mathematics 23, European Mathematical Society (EMS), Zurich, 2016. Google Scholar

[29]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Analysis, 7 (1971), 487-513. doi: 10.1016/0022-1236(71)90030-9. Google Scholar

[30]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102. Google Scholar

[31]

E. M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514. Google Scholar

[32]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264. Google Scholar

[33]

D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Functional Analysis, 168 (1999), 121-144. doi: 10.1006/jfan.1999.3462. Google Scholar

Figure 1.  Example 1
Figure 2.  Example 2
[1]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[2]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[3]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[4]

Raúl Ferreira, Julio D. Rossi. Decay estimates for a nonlocal $p-$Laplacian evolution problem with mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1469-1478. doi: 10.3934/dcds.2015.35.1469

[5]

Pradeep Boggarapu, Luz Roncal, Sundaram Thangavelu. On extension problem, trace Hardy and Hardy's inequalities for some fractional Laplacians. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2575-2605. doi: 10.3934/cpaa.2019116

[6]

Stathis Filippas, Luisa Moschini, Achilles Tertikas. Trace Hardy--Sobolev--Maz'ya inequalities for the half fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (2) : 373-382. doi: 10.3934/cpaa.2015.14.373

[7]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[8]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[9]

Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191

[10]

Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016

[11]

Wei Gao, Juan Luis García Guirao, Mahmoud Abdel-Aty, Wenfei Xi. An independent set degree condition for fractional critical deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 877-886. doi: 10.3934/dcdss.2019058

[12]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[13]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[14]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[15]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[16]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[17]

Samia Challal, Abdeslem Lyaghfouri. The heterogeneous dam problem with leaky boundary condition. Communications on Pure & Applied Analysis, 2011, 10 (1) : 93-125. doi: 10.3934/cpaa.2011.10.93

[18]

Jaeyoung Byeon, Sangdon Jin. The Hénon equation with a critical exponent under the Neumann boundary condition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4353-4390. doi: 10.3934/dcds.2018190

[19]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[20]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (183)
  • HTML views (433)
  • Cited by (0)

[Back to Top]