June  2018, 38(6): 2809-2825. doi: 10.3934/dcds.2018119

Ruelle's inequality in negative curvature

IMA, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Cerro Barón. Valparaíso, Chile

Supported by Programa FONDECYT Postdoctorado, Proyecto 3170049

Received  May 2017 Revised  December 2017 Published  April 2018

In this paper we study different notions of entropy for measure-preserving dynamical systems defined on noncompact spaces. We see that some classical results for compact spaces remain partially valid in this setting. We define a new kind of entropy for dynamical systems defined on noncompact Riemannian manifolds, which satisfies similar properties to the classical ones. As an application, we prove Ruelle's inequality and Pesin's entropy formula for the geodesic flow in manifolds with pinched negative sectional curvature.

Citation: Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119
References:
[1]

W. Ballmann, Lectures on Spaces of Nonpositive Curvature, (With an appendix by Misha Brin), DMV Seminar, Birkhäuser Verlag, Basel, 1995. Google Scholar

[2]

W. BallmannM. Brin and K. Burns, On the differentiability of horocycles and horocycle foliations, J. Differential Geom., 26 (1987), 337-347. doi: 10.4310/jdg/1214441374. Google Scholar

[3]

M. Brin and A. Katok, On local entropy, Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., 1007 (1983), 30-38. Google Scholar

[4]

B. Gurevich and S. Katok, Arithmetic coding and entropy for the positive geodesic flow on the modular surface, Mosc. Math. J., 1 (2001), 569-582. Google Scholar

[5]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173. Google Scholar

[6]

F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, Inst. Hautes Études Sci. Publ. Math., 59 (1984), 163-188. Google Scholar

[7]

F. Ledrappier, Quelques propriétés des exposants caractéristiques, École D'été de Probabilités de Saint-Flour, XII-1982, Springer-Berlin, 1097 (1984), 305-396. Google Scholar

[8]

F. Ledrappier, Entropie et principe variationnel pour le flot géodésique en courbure négative pincée, Géométrie Ergodique, Monogr. Enseign. Math., 43 (2013), 117-144. Google Scholar

[9]

F. Ledrappier and J.-M. Strelcyn, A proof of the estimation from below in Pesin's entropy formula, Ergodic Theory Dynam. Systems, 2 (1982), 203-219. Google Scholar

[10]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. Ⅰ. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2), 122 (1985), 509-539. doi: 10.2307/1971328. Google Scholar

[11]

V. Losert and K. Schmidt, A class of probability measures on groups arising from some problems in ergodic theory, Probability measures on groups (Proc. Fifth Conf., Oberwolfach, 1978), Springer-Berlin, 706 (1979), 220-238. Google Scholar

[12]

V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., 19 (1968), 179-210. Google Scholar

[13]

J.-P. Otal and M. Peigné, Principe variationnel et groupes kleiniens, Duke Math. J., 125 (2004), 15-44. doi: 10.1215/S0012-7094-04-12512-6. Google Scholar

[14]

F. Paulin, M. Pollicott and B. Schapira, Equilibrium states in negative curvature, Astérisque, 373 (2015), viii+281pp. Google Scholar

[15]

J. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk, 32 (1977), 55-112,287. Google Scholar

[16]

F. Riquelme, Counterexamples to Ruelle's inequality in the noncompact case, Annales de l'institut Fourier, 67 (2017), 23-41. doi: 10.5802/aif.3076. Google Scholar

[17]

D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat., 9 (1978), 83-87. doi: 10.1007/BF02584795. Google Scholar

[18]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. Google Scholar

show all references

References:
[1]

W. Ballmann, Lectures on Spaces of Nonpositive Curvature, (With an appendix by Misha Brin), DMV Seminar, Birkhäuser Verlag, Basel, 1995. Google Scholar

[2]

W. BallmannM. Brin and K. Burns, On the differentiability of horocycles and horocycle foliations, J. Differential Geom., 26 (1987), 337-347. doi: 10.4310/jdg/1214441374. Google Scholar

[3]

M. Brin and A. Katok, On local entropy, Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., 1007 (1983), 30-38. Google Scholar

[4]

B. Gurevich and S. Katok, Arithmetic coding and entropy for the positive geodesic flow on the modular surface, Mosc. Math. J., 1 (2001), 569-582. Google Scholar

[5]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173. Google Scholar

[6]

F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, Inst. Hautes Études Sci. Publ. Math., 59 (1984), 163-188. Google Scholar

[7]

F. Ledrappier, Quelques propriétés des exposants caractéristiques, École D'été de Probabilités de Saint-Flour, XII-1982, Springer-Berlin, 1097 (1984), 305-396. Google Scholar

[8]

F. Ledrappier, Entropie et principe variationnel pour le flot géodésique en courbure négative pincée, Géométrie Ergodique, Monogr. Enseign. Math., 43 (2013), 117-144. Google Scholar

[9]

F. Ledrappier and J.-M. Strelcyn, A proof of the estimation from below in Pesin's entropy formula, Ergodic Theory Dynam. Systems, 2 (1982), 203-219. Google Scholar

[10]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. Ⅰ. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2), 122 (1985), 509-539. doi: 10.2307/1971328. Google Scholar

[11]

V. Losert and K. Schmidt, A class of probability measures on groups arising from some problems in ergodic theory, Probability measures on groups (Proc. Fifth Conf., Oberwolfach, 1978), Springer-Berlin, 706 (1979), 220-238. Google Scholar

[12]

V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., 19 (1968), 179-210. Google Scholar

[13]

J.-P. Otal and M. Peigné, Principe variationnel et groupes kleiniens, Duke Math. J., 125 (2004), 15-44. doi: 10.1215/S0012-7094-04-12512-6. Google Scholar

[14]

F. Paulin, M. Pollicott and B. Schapira, Equilibrium states in negative curvature, Astérisque, 373 (2015), viii+281pp. Google Scholar

[15]

J. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk, 32 (1977), 55-112,287. Google Scholar

[16]

F. Riquelme, Counterexamples to Ruelle's inequality in the noncompact case, Annales de l'institut Fourier, 67 (2017), 23-41. doi: 10.5802/aif.3076. Google Scholar

[17]

D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat., 9 (1978), 83-87. doi: 10.1007/BF02584795. Google Scholar

[18]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. Google Scholar

[1]

Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433

[2]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[3]

Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957

[4]

Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107

[5]

Sebastian J. Schreiber. Expansion rates and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 433-438. doi: 10.3934/dcds.1997.3.433

[6]

P. Kaplický, Dalibor Pražák. Lyapunov exponents and the dimension of the attractor for 2d shear-thinning incompressible flow. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 961-974. doi: 10.3934/dcds.2008.20.961

[7]

Chao Liang, Wenxiang Sun, Jiagang Yang. Some results on perturbations of Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4287-4305. doi: 10.3934/dcds.2012.32.4287

[8]

Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841

[9]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[10]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[11]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[12]

Zhenqi Jenny Wang. The twisted cohomological equation over the geodesic flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3923-3940. doi: 10.3934/dcds.2019158

[13]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

[14]

Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619

[15]

Jianyu Chen. On essential coexistence of zero and nonzero Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4149-4170. doi: 10.3934/dcds.2012.32.4149

[16]

Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187

[17]

Andrey Gogolev, Ali Tahzibi. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics, 2014, 8 (3&4) : 549-576. doi: 10.3934/jmd.2014.8.549

[18]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[19]

Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209

[20]

Lucas Backes, Aaron Brown, Clark Butler. Continuity of Lyapunov exponents for cocycles with invariant holonomies. Journal of Modern Dynamics, 2018, 12: 223-260. doi: 10.3934/jmd.2018009

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (42)
  • HTML views (114)
  • Cited by (0)

Other articles
by authors

[Back to Top]