May 2018, 38(5): 2487-2503. doi: 10.3934/dcds.2018103

Topological stability and spectral decomposition for homeomorphisms on noncompact spaces

Department of Mathematics, Chungnam National University, Daejeon 305-764, Korea

* Corresponding author (yangyinong1201@gmail.com)

Received  August 2017 Published  March 2018

In this paper, we introduce the notions of expansiveness, shadowing property and topological stability for homeomorphisms on noncompact metric spaces which are dynamical properties and equivalent to the classical definitions in case of compact metric spaces. Then we extend the Walters's stability theorem and Smale's spectral decomposition theorem to homeomorphisms on locally compact metric spaces.

Citation: Keonhee Lee, Ngoc-Thach Nguyen, Yinong Yang. Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2487-2503. doi: 10.3934/dcds.2018103
References:
[1]

N. Aoki, On homeomorphisms with pseudo-orbit tracing property, Tokyo J. Math., 6 (1983), 329-334. doi: 10.3836/tjm/1270213874.

[2]

B. Carvalho and W. Cordeiro, N-expansive homeomorphisms with the shadowing property, J. Differential Equations, 261 (2016), 3734-3755. doi: 10.1016/j.jde.2016.06.003.

[3]

N.-P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc., 146 (2018), 1047-1057.

[4]

W. CordeiroM. Denker and X. Zhang, On specification and measure expansiveness, Discrete Contin. Dyn. Syst., 37 (2017), 1941-1957.

[5]

T. DasK. LeeD. Richeson and J. Wiseman, Spectral decomposition for topologically Anosov homemorphisms on noncompact and non-metrizable spaces, Topology Appl., 160 (2013), 149-158. doi: 10.1016/j.topol.2012.10.010.

[6]

M. Hurley, Chain recurrence, semiflows, and gradients, J. Dynam. Differential Equations, 7 (1995), 437-456. doi: 10.1007/BF02219371.

[7]

K. Lee and C. A. Morales, Topological stability and pseudo-orbit tracing property for expansive measures, J. Differential Equations, 262 (2017), 3467-3487. doi: 10.1016/j.jde.2016.04.029.

[8]

P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Conti. Dyn. Syst., 20 (2008), 1039-1056. doi: 10.3934/dcds.2008.20.1039.

[9]

S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817. doi: 10.1090/S0002-9904-1967-11798-1.

[10]

P. Walters, On the pseudo-orbit tracing property and its relationship to stability, Lecture Notes in Math., Springer, 668 (1978), 231-244.

show all references

References:
[1]

N. Aoki, On homeomorphisms with pseudo-orbit tracing property, Tokyo J. Math., 6 (1983), 329-334. doi: 10.3836/tjm/1270213874.

[2]

B. Carvalho and W. Cordeiro, N-expansive homeomorphisms with the shadowing property, J. Differential Equations, 261 (2016), 3734-3755. doi: 10.1016/j.jde.2016.06.003.

[3]

N.-P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc., 146 (2018), 1047-1057.

[4]

W. CordeiroM. Denker and X. Zhang, On specification and measure expansiveness, Discrete Contin. Dyn. Syst., 37 (2017), 1941-1957.

[5]

T. DasK. LeeD. Richeson and J. Wiseman, Spectral decomposition for topologically Anosov homemorphisms on noncompact and non-metrizable spaces, Topology Appl., 160 (2013), 149-158. doi: 10.1016/j.topol.2012.10.010.

[6]

M. Hurley, Chain recurrence, semiflows, and gradients, J. Dynam. Differential Equations, 7 (1995), 437-456. doi: 10.1007/BF02219371.

[7]

K. Lee and C. A. Morales, Topological stability and pseudo-orbit tracing property for expansive measures, J. Differential Equations, 262 (2017), 3467-3487. doi: 10.1016/j.jde.2016.04.029.

[8]

P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Conti. Dyn. Syst., 20 (2008), 1039-1056. doi: 10.3934/dcds.2008.20.1039.

[9]

S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817. doi: 10.1090/S0002-9904-1967-11798-1.

[10]

P. Walters, On the pseudo-orbit tracing property and its relationship to stability, Lecture Notes in Math., Springer, 668 (1978), 231-244.

[1]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

[2]

Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure & Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861

[3]

Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467

[4]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[5]

Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082

[6]

Welington Cordeiro, Manfred Denker, Xuan Zhang. Corrigendum to: On specification and measure expansiveness. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3705-3706. doi: 10.3934/dcds.2018160

[7]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[8]

Alexanger Arbieto, Carlos Arnoldo Morales Rojas. Topological stability from Gromov-Hausdorff viewpoint. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3531-3544.

[9]

Edson Pindza, Francis Youbi, Eben Maré, Matt Davison. Barycentric spectral domain decomposition methods for valuing a class of infinite activity Lévy models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 625-643. doi: 10.3934/dcdss.2019040

[10]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[11]

Sergei Yu. Pilyugin. Variational shadowing. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 733-737. doi: 10.3934/dcdsb.2010.14.733

[12]

Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869

[13]

Qiuxia Liu, Peidong Liu. Topological stability of hyperbolic sets of flows under random perturbations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 117-127. doi: 10.3934/dcdsb.2010.13.117

[14]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[15]

Mahesh G. Nerurkar. Spectral and stability questions concerning evolution of non-autonomous linear systems. Conference Publications, 2001, 2001 (Special) : 270-275. doi: 10.3934/proc.2001.2001.270

[16]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[17]

Salvador Cruz-García, Catherine García-Reimbert. On the spectral stability of standing waves of the one-dimensional $M^5$-model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1079-1099. doi: 10.3934/dcdsb.2016.21.1079

[18]

Ramon Plaza, K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 885-924. doi: 10.3934/dcds.2004.10.885

[19]

V. M. Gundlach, Yu. Kifer. Expansiveness, specification, and equilibrium states for random bundle transformations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 89-120. doi: 10.3934/dcds.2000.6.89

[20]

Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (84)
  • HTML views (208)
  • Cited by (0)

Other articles
by authors

[Back to Top]