May 2018, 38(5): 2441-2465. doi: 10.3934/dcds.2018101

The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

Received  August 2017 Published  March 2018

We construct a heteroclinic solution to the FitzHugh-Nagumo type reaction-diffusion system (FHN RD system) with heterogeneity by the sub-supersolution method due to [5]. $σ(d,γ)$ is introduced as the Rayleigh quotient corresponding to a linearized eigenvalue problem of the subsolution, where $d$ and $γ$ are parameters. The key to construct the solution is the uniform estimate for $σ(·,·)$ from below. In addition, it enables us to analyze an asymptotic behavior of the solution.

Citation: Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101
References:
[1]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations, 3 (2006), 103-202.

[2]

T. Cazenave, Semilinear Schorödinger Equations, Courant Lecture Notes; 10, American Mathematical Society, 2003.

[3]

C. N. Chen, S. Ei and Y. Morita, Weakly interacting wavefront dynamics in FitzHugh-Nagumo systems, preprint.

[4]

C. N. Chen, P. van Heijster, Y. Nishiura and T. Teramoto, Localized patterns in a three-component FizHugh-Nagumo model revisited via an action functional, J. Dyn. Diff. Equat., (2016). doi: 10.1007/s10884-016-9557-z.

[5]

C. N. ChenS. Y. Kung and Y. Morita, Planar standing wavefronts in the FitzHugh-Nagumo equations, SIAM J. Math. Anal., 46 (2014), 657-690. doi: 10.1137/130907793.

[6]

E. N. Dancer and S. Yan, A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 237-253. doi: 10.1016/j.anihpc.2003.02.001.

[7]

L. C. Evans, Partial Differential Equations, Vol. 19 of Grad. Stud. Math., American Mathematical Society, 2010.

[8]

T. Kajiwara, A heteroclinic solution to a variational problem corresponding to FitzHugh-Nagumo type reaction-diffusion system with heterogeneity, Comm. Pure Appl. Anal., 16 (2017), 2133-2156. doi: 10.3934/cpaa.2017106.

[9]

K. Kurata and H. Matsuzawa, Multiple stable patterns in a balanced bistable equation with heterogeneous environments, Appl. Anal., 89 (2010), 1023-1035. doi: 10.1080/00036811003717947.

[10]

K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025-1038.

[11]

Y. Nishiura, Coexistence of infinitely many stable solutions to reaction-diffusion system in the singular limit, Dynamics Reported: Expositions in Dynamical Systems, Springer, New York, 3 (1994), 25-103. doi: 10.1007/978-3-642-78234-3_2.

[12]

Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188 (2003), 110-134. doi: 10.1016/S0022-0396(02)00084-0.

show all references

References:
[1]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations, 3 (2006), 103-202.

[2]

T. Cazenave, Semilinear Schorödinger Equations, Courant Lecture Notes; 10, American Mathematical Society, 2003.

[3]

C. N. Chen, S. Ei and Y. Morita, Weakly interacting wavefront dynamics in FitzHugh-Nagumo systems, preprint.

[4]

C. N. Chen, P. van Heijster, Y. Nishiura and T. Teramoto, Localized patterns in a three-component FizHugh-Nagumo model revisited via an action functional, J. Dyn. Diff. Equat., (2016). doi: 10.1007/s10884-016-9557-z.

[5]

C. N. ChenS. Y. Kung and Y. Morita, Planar standing wavefronts in the FitzHugh-Nagumo equations, SIAM J. Math. Anal., 46 (2014), 657-690. doi: 10.1137/130907793.

[6]

E. N. Dancer and S. Yan, A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 237-253. doi: 10.1016/j.anihpc.2003.02.001.

[7]

L. C. Evans, Partial Differential Equations, Vol. 19 of Grad. Stud. Math., American Mathematical Society, 2010.

[8]

T. Kajiwara, A heteroclinic solution to a variational problem corresponding to FitzHugh-Nagumo type reaction-diffusion system with heterogeneity, Comm. Pure Appl. Anal., 16 (2017), 2133-2156. doi: 10.3934/cpaa.2017106.

[9]

K. Kurata and H. Matsuzawa, Multiple stable patterns in a balanced bistable equation with heterogeneous environments, Appl. Anal., 89 (2010), 1023-1035. doi: 10.1080/00036811003717947.

[10]

K. Nakashima, Stable transition layers in a balanced bistable equation, Differential and Integral Equations, 13 (2000), 1025-1038.

[11]

Y. Nishiura, Coexistence of infinitely many stable solutions to reaction-diffusion system in the singular limit, Dynamics Reported: Expositions in Dynamical Systems, Springer, New York, 3 (1994), 25-103. doi: 10.1007/978-3-642-78234-3_2.

[12]

Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188 (2003), 110-134. doi: 10.1016/S0022-0396(02)00084-0.

[1]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[2]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-11. doi: 10.3934/dcdsb.2018077

[3]

Vyacheslav Maksimov. Some problems of guaranteed control of the Schlögl and FitzHugh-Nagumo systems. Evolution Equations & Control Theory, 2017, 6 (4) : 559-586. doi: 10.3934/eect.2017028

[4]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[5]

Arnold Dikansky. Fitzhugh-Nagumo equations in a nonhomogeneous medium. Conference Publications, 2005, 2005 (Special) : 216-224. doi: 10.3934/proc.2005.2005.216

[6]

Anna Cattani. FitzHugh-Nagumo equations with generalized diffusive coupling. Mathematical Biosciences & Engineering, 2014, 11 (2) : 203-215. doi: 10.3934/mbe.2014.11.203

[7]

Abiti Adili, Bixiang Wang. Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 643-666. doi: 10.3934/dcdsb.2013.18.643

[8]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

[9]

John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851

[10]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[11]

Yiqiu Mao. Dynamic transitions of the Fitzhugh-Nagumo equations on a finite domain. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-13. doi: 10.3934/dcdsb.2018118

[12]

Yangrong Li, Jinyan Yin. A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1203-1223. doi: 10.3934/dcdsb.2016.21.1203

[13]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

[14]

Matthieu Alfaro, Hiroshi Matano. On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1639-1649. doi: 10.3934/dcdsb.2012.17.1639

[15]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[16]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[17]

Mihaela Negreanu, J. Ignacio Tello. On a comparison method to reaction-diffusion systems and its applications to chemotaxis. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2669-2688. doi: 10.3934/dcdsb.2013.18.2669

[18]

Dumitru Motreanu, Calogero Vetro, Francesca Vetro. Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 309-321. doi: 10.3934/dcdss.2018017

[19]

François Hamel, Jean-Michel Roquejoffre. Heteroclinic connections for multidimensional bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 101-123. doi: 10.3934/dcdss.2011.4.101

[20]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (57)
  • HTML views (150)
  • Cited by (0)

Other articles
by authors

[Back to Top]