May 2018, 38(5): 2251-2286. doi: 10.3934/dcds.2018093

Global stability of V-shaped traveling fronts in combustion and degenerate monostable equations

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

* Corresponding author: Z.-C. Wang

Received  April 2017 Revised  December 2017 Published  March 2018

This paper is concerned with the global stability of V-shaped traveling fronts in reaction-diffusion equations with combustion and degenerate monostable nonlinearity. The existence of such curved fronts has been recently proved by [39]. In this paper, by constructing new subsolutions, we show the asymptotic stability of V-shaped traveling fronts.

Citation: Zhen-Hui Bu, Zhi-Cheng Wang. Global stability of V-shaped traveling fronts in combustion and degenerate monostable equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2251-2286. doi: 10.3934/dcds.2018093
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.

[2]

A. Bonnet and F. Hamel, Existence of non-planar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118. doi: 10.1137/S0036141097316391.

[3]

P. K. Brazhnik, Exact solutions for the kinematic model of autowaves in two-dimensional excitable media, Physica D, 94 (1996), 205-220. doi: 10.1016/0167-2789(96)00042-5.

[4]

Z.-H. Bu and Z.-C. Wang, Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 15 (2016), 139-160. doi: 10.3934/cpaa.2016.15.139.

[5]

Z.-H. Bu and Z.-C. Wang, Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations Ⅰ, Discrete Contin. Dyn. Syst., 37 (2017), 2395-2430. doi: 10.3934/dcds.2017104.

[6]

C. Conley and R. Gardner, An application of the generalized Morse index to traveling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.33018.

[7]

M. El SmailyF. Hamel and R. Huang, Two-dimensional curved fronts in a periodic shear flow, Nonlinear Anal., 74 (2011), 6469-6486. doi: 10.1016/j.na.2011.06.030.

[8]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer-Verlag, Berlin-New York, 1979. doi: 10.1007/978-3-642-93111-6.

[9]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling wave solutions, Arch. Rational Mech. Anal., 65 (1977), 335-361. doi: 10.1007/BF00250432.

[10]

P. C. Fife and J. B. McLeod, A phase discussion of convergence to traveling fronts for nonlinear diffusions, Arch. Rational Mech. Anal., 75 (1980/81), 281-314. doi: 10.1007/BF00256381.

[11]

R. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355-369.

[12]

F. Hamel, Bistable transition fronts in $ \mathbb{R}^{N}$, Adv. Math., 289 (2016), 279-344. doi: 10.1016/j.aim.2015.11.033.

[13]

F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in $ \mathbb{R}^{N}$ with conicalshaped level sets, Comm. Partial Differential Equations, 25 (2000), 769-819. doi: 10.1080/03605300008821532.

[14]

F. HamelR. Monneau and J.-M. Roquejoffre, Stability of conical fronts in a model for conical flames in two space dimensions, Ann. Sci. École Normale Sup., 37 (2004), 469-506. doi: 10.1016/j.ansens.2004.03.001.

[15]

F. HamelR. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096. doi: 10.3934/dcds.2005.13.1069.

[16]

F. HamelR. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92. doi: 10.3934/dcds.2006.14.75.

[17]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $ \mathbb{R}^{N}$, Arch. Ration. Mech. Anal., 157 (2001), 91-163. doi: 10.1007/PL00004238.

[18]

R. Huang, Stability of travelling fronts of the Fisher-KPP equation in $ \mathbb{R}^{N}$, Nonlinear Diff. Eq. Appl., 15 (2008), 599-622. doi: 10.1007/s00030-008-7041-0.

[19]

A. N. KolmogorovI. G. Petrovskii and N. S. Piskunov, Étude de I'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937), 1-25.

[20]

Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031-1054. doi: 10.1017/S0308210510001253.

[21]

J. A. LeachD. J. Needham and A. L. Kay, The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: Algebraic decay rates, Phys. D, 167 (2002), 153-182. doi: 10.1016/S0167-2789(02)00428-1.

[22]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[23]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reactiondiffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.2307/2001590.

[24]

J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[25]

W.-M. Ni and M. Taniguchi, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8 (2013), 379-395. doi: 10.3934/nhm.2013.8.379.

[26]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832. doi: 10.3934/dcds.2006.15.819.

[27]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233. doi: 10.1016/j.jde.2004.06.011.

[28]

H. Ninomiya and M. Taniguchi, Stability of traveling curved fronts in a curvature flow with driving force, Methods Appl. Anal., 8 (2001), 429-450. doi: 10.4310/MAA.2001.v8.n3.a4.

[29]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Insiana Univ. Math. J., 21 (1972), 979-1000. doi: 10.1512/iumj.1972.21.21079.

[30]

W.-J. ShengW.-T. Li and Z.-C. Wang, Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 252 (2012), 2388-2424. doi: 10.1016/j.jde.2011.09.016.

[31]

W.-J. ShengW.-T. Li and Z.-C. Wang, Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation, Sci. China Math., 56 (2013), 1969-1982. doi: 10.1007/s11425-013-4699-5.

[32]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344. doi: 10.1137/060661788.

[33]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009), 2103-2130. doi: 10.1016/j.jde.2008.06.037.

[34]

M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contnu. Dyn. Syst., 32 (2012), 1011-1046. doi: 10.3934/dcds.2012.32.1011.

[35]

M. Taniguchi, An (N-1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen-Cahn equation, SIAM J. Math. Anal., 47 (2015), 455-476. doi: 10.1137/130945041.

[36]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, 140, Amer. Math. Soc., Providence, RI, 1994.

[37]

Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012), 2339-2374. doi: 10.3934/dcds.2012.32.2339.

[38]

Z.-C. Wang, Cylindrically symmetric traveling fronts in reaction-diffusion equations with bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1053-1090. doi: 10.1017/S0308210515000268.

[39]

Z.-C. Wang and Z.-H. Bu, Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearity, J. Differential Equations, 260 (2016), 6405-6450. doi: 10.1016/j.jde.2015.12.045.

[40]

Z.-C. WangW.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advecion diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200. doi: 10.1016/j.jde.2007.03.025.

[41]

Z.-C. WangW.-T. Li and S. Ruan, Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems, Sci. China Math., 59 (2016), 1869-1908. doi: 10.1007/s11425-016-0015-x.

[42]

Z.-C. WangH.-L. Niu and S. Ruan, On the existence of axisymmetric traveling fronts in the Lotka-Volterra competition-diffusion system in $ \mathbb{R}^{3}$, Discrete Contin. Dyn. Syst -B, 22 (2017), 1111-1144. doi: 10.3934/dcdsb.2017055.

[43]

Z.-C. Wang and J. Wu, Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 250 (2011), 3196-3229. doi: 10.1016/j.jde.2011.01.017.

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.

[2]

A. Bonnet and F. Hamel, Existence of non-planar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118. doi: 10.1137/S0036141097316391.

[3]

P. K. Brazhnik, Exact solutions for the kinematic model of autowaves in two-dimensional excitable media, Physica D, 94 (1996), 205-220. doi: 10.1016/0167-2789(96)00042-5.

[4]

Z.-H. Bu and Z.-C. Wang, Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 15 (2016), 139-160. doi: 10.3934/cpaa.2016.15.139.

[5]

Z.-H. Bu and Z.-C. Wang, Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations Ⅰ, Discrete Contin. Dyn. Syst., 37 (2017), 2395-2430. doi: 10.3934/dcds.2017104.

[6]

C. Conley and R. Gardner, An application of the generalized Morse index to traveling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.33018.

[7]

M. El SmailyF. Hamel and R. Huang, Two-dimensional curved fronts in a periodic shear flow, Nonlinear Anal., 74 (2011), 6469-6486. doi: 10.1016/j.na.2011.06.030.

[8]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer-Verlag, Berlin-New York, 1979. doi: 10.1007/978-3-642-93111-6.

[9]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling wave solutions, Arch. Rational Mech. Anal., 65 (1977), 335-361. doi: 10.1007/BF00250432.

[10]

P. C. Fife and J. B. McLeod, A phase discussion of convergence to traveling fronts for nonlinear diffusions, Arch. Rational Mech. Anal., 75 (1980/81), 281-314. doi: 10.1007/BF00256381.

[11]

R. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355-369.

[12]

F. Hamel, Bistable transition fronts in $ \mathbb{R}^{N}$, Adv. Math., 289 (2016), 279-344. doi: 10.1016/j.aim.2015.11.033.

[13]

F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in $ \mathbb{R}^{N}$ with conicalshaped level sets, Comm. Partial Differential Equations, 25 (2000), 769-819. doi: 10.1080/03605300008821532.

[14]

F. HamelR. Monneau and J.-M. Roquejoffre, Stability of conical fronts in a model for conical flames in two space dimensions, Ann. Sci. École Normale Sup., 37 (2004), 469-506. doi: 10.1016/j.ansens.2004.03.001.

[15]

F. HamelR. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096. doi: 10.3934/dcds.2005.13.1069.

[16]

F. HamelR. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92. doi: 10.3934/dcds.2006.14.75.

[17]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $ \mathbb{R}^{N}$, Arch. Ration. Mech. Anal., 157 (2001), 91-163. doi: 10.1007/PL00004238.

[18]

R. Huang, Stability of travelling fronts of the Fisher-KPP equation in $ \mathbb{R}^{N}$, Nonlinear Diff. Eq. Appl., 15 (2008), 599-622. doi: 10.1007/s00030-008-7041-0.

[19]

A. N. KolmogorovI. G. Petrovskii and N. S. Piskunov, Étude de I'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937), 1-25.

[20]

Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031-1054. doi: 10.1017/S0308210510001253.

[21]

J. A. LeachD. J. Needham and A. L. Kay, The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: Algebraic decay rates, Phys. D, 167 (2002), 153-182. doi: 10.1016/S0167-2789(02)00428-1.

[22]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[23]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reactiondiffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.2307/2001590.

[24]

J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[25]

W.-M. Ni and M. Taniguchi, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8 (2013), 379-395. doi: 10.3934/nhm.2013.8.379.

[26]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832. doi: 10.3934/dcds.2006.15.819.

[27]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233. doi: 10.1016/j.jde.2004.06.011.

[28]

H. Ninomiya and M. Taniguchi, Stability of traveling curved fronts in a curvature flow with driving force, Methods Appl. Anal., 8 (2001), 429-450. doi: 10.4310/MAA.2001.v8.n3.a4.

[29]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Insiana Univ. Math. J., 21 (1972), 979-1000. doi: 10.1512/iumj.1972.21.21079.

[30]

W.-J. ShengW.-T. Li and Z.-C. Wang, Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 252 (2012), 2388-2424. doi: 10.1016/j.jde.2011.09.016.

[31]

W.-J. ShengW.-T. Li and Z.-C. Wang, Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation, Sci. China Math., 56 (2013), 1969-1982. doi: 10.1007/s11425-013-4699-5.

[32]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344. doi: 10.1137/060661788.

[33]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009), 2103-2130. doi: 10.1016/j.jde.2008.06.037.

[34]

M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contnu. Dyn. Syst., 32 (2012), 1011-1046. doi: 10.3934/dcds.2012.32.1011.

[35]

M. Taniguchi, An (N-1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen-Cahn equation, SIAM J. Math. Anal., 47 (2015), 455-476. doi: 10.1137/130945041.

[36]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, 140, Amer. Math. Soc., Providence, RI, 1994.

[37]

Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012), 2339-2374. doi: 10.3934/dcds.2012.32.2339.

[38]

Z.-C. Wang, Cylindrically symmetric traveling fronts in reaction-diffusion equations with bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1053-1090. doi: 10.1017/S0308210515000268.

[39]

Z.-C. Wang and Z.-H. Bu, Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearity, J. Differential Equations, 260 (2016), 6405-6450. doi: 10.1016/j.jde.2015.12.045.

[40]

Z.-C. WangW.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advecion diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200. doi: 10.1016/j.jde.2007.03.025.

[41]

Z.-C. WangW.-T. Li and S. Ruan, Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems, Sci. China Math., 59 (2016), 1869-1908. doi: 10.1007/s11425-016-0015-x.

[42]

Z.-C. WangH.-L. Niu and S. Ruan, On the existence of axisymmetric traveling fronts in the Lotka-Volterra competition-diffusion system in $ \mathbb{R}^{3}$, Discrete Contin. Dyn. Syst -B, 22 (2017), 1111-1144. doi: 10.3934/dcdsb.2017055.

[43]

Z.-C. Wang and J. Wu, Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 250 (2011), 3196-3229. doi: 10.1016/j.jde.2011.01.017.

Figure 1.  The profiles of the traveling curved front $V$ and the thick solid curve shows the level line $V = 0.5$.
Figure 2.  The level sets of the traveling curved front $V$.
[1]

Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921

[2]

Zhen-Hui Bu, Zhi-Cheng Wang. Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations Ⅰ. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2395-2430. doi: 10.3934/dcds.2017104

[3]

Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817

[4]

Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868

[5]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[6]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[7]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[8]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[9]

Ming Mei, Yau Shu Wong. Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 743-752. doi: 10.3934/mbe.2009.6.743

[10]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[11]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[12]

Messoud Efendiev, Alain Miranville. Finite dimensional attractors for reaction-diffusion equations in $R^n$ with a strong nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 399-424. doi: 10.3934/dcds.1999.5.399

[13]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

[14]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[15]

Luisa Malaguti, Cristina Marcelli, Serena Matucci. Continuous dependence in front propagation of convective reaction-diffusion equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1083-1098. doi: 10.3934/cpaa.2010.9.1083

[16]

Yuri Latushkin, Roland Schnaubelt, Xinyao Yang. Stable foliations near a traveling front for reaction diffusion systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3145-3165. doi: 10.3934/dcdsb.2017168

[17]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[18]

Mitsunori Nara, Masaharu Taniguchi. Convergence to V-shaped fronts in curvature flows for spatially non-decaying initial perturbations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 137-156. doi: 10.3934/dcds.2006.16.137

[19]

Tetsuya Ishiwata. Motion of polygonal curved fronts by crystalline motion: v-shaped solutions and eventual monotonicity. Conference Publications, 2011, 2011 (Special) : 717-726. doi: 10.3934/proc.2011.2011.717

[20]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (78)
  • HTML views (178)
  • Cited by (0)

Other articles
by authors

[Back to Top]