2018, 38(4): 2207-2228. doi: 10.3934/dcds.2018091

Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data

1. 

Université Côte d'Azur, LJAD, 06100, France

2. 

Department of Mathematics and Hubei Province Key Laboratory of Mathematical Physics, Central China Normal University, Wuhan 430079, China

3. 

Université Côte d'Azur, LJAD, 06100, France

* Corresponding author: Hua Wang

Received  June 2017 Revised  October 2017 Published  January 2018

Fund Project: The first and last authors are financed by ERC project SCAPDE, the second author is supported by NSF grant 11101172, 11371158 and 11571131, and the third author is supported by NSF grant 11371158 and 11771165

The aim of this paper is to adapt the strategy in [8] [ See, B. Dodson, J. Murphy, a new proof of scattering below the ground state for the 3D radial focusing cubic NLS, arXiv:1611.04195 ] to prove the scattering of radial solutions below sharp threshold for certain focusing fractional NLS. The main ingredient is to apply the fractional virial identity proved in [3] [ See, T. Boulenger, D. Himmelsbach, E. Lenzmann, Blow up for fractional NLS, J. Func. Anal, 271(2016), 2569-2603 ] to exclude the concentration of mass near the origin.

Citation: Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091
References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific. J. Math., 10 (1960), 419-437. doi: 10.2140/pjm.1960.10.419.

[3]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blow up for fractional NLS, J. Functional Analysis, 271 (2016), 2569-2603. doi: 10.1016/j.jfa.2016.08.011.

[4]

W. ChenC. Miao and X. Yao, Dispersive estimates with geometry of finite type, Communications in Partial Differential Equations, 37 (2012), 479-510. doi: 10.1080/03605302.2011.641053.

[5]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009), 355-365. doi: 10.1142/S0219199709003399.

[6]

Y. ChoG. HwangS. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete and Continuous Dynamical Systems, 35 (2015), 2863-2880. doi: 10.3934/dcds.2015.35.2863.

[7]

V. D. Dinh, On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces, preprint, arXiv: 1701.00852.

[8]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867, arXiv: 1611.04195. doi: 10.1090/proc/13678.

[9]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacian in $ \mathbb{R}$, Acta Math., 210 (2013), 261-318. doi: 10.1007/s11511-013-0095-9.

[10]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726. doi: 10.1002/cpa.21591.

[11]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equation, J. Anal. Math., 124 (2014), 1-38. doi: 10.1007/s11854-014-0025-6.

[12]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional Schrodinger equation in the radial case, preprint, arXiv: 1310.6816.

[13]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Communications on Pure and Applied Analysis, 14 (2015), 2265-2282. doi: 10.3934/cpaa.2015.14.2265.

[14]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. App. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[15]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[16]

J. KriegerE. Lenzmann and P. Raphaël, Nondispersive solutions to the $ L^2$-critical half-wave equations, Arch. Ration. Mech. Anal., 209 (2013), 61-129. doi: 10.1007/s00205-013-0620-1.

[17]

N. Laskin, Fractional Schrödinger equation Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108.

[18]

T. Ogawa and Y. Tsutsumi, Blow-up of $ H^1$ solution for the nonlinear Schrödinger equation, J. Differ. Eqns., 92 (1991), 317-330. doi: 10.1016/0022-0396(91)90052-B.

[19]

E. M. Stein, Harmonic Analysis: Real-Variable Theory, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 2000.

[20]

T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial. Differ.Equ., 1 (2004), 1-47. doi: 10.4310/DPDE.2004.v1.n1.a1.

show all references

References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific. J. Math., 10 (1960), 419-437. doi: 10.2140/pjm.1960.10.419.

[3]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blow up for fractional NLS, J. Functional Analysis, 271 (2016), 2569-2603. doi: 10.1016/j.jfa.2016.08.011.

[4]

W. ChenC. Miao and X. Yao, Dispersive estimates with geometry of finite type, Communications in Partial Differential Equations, 37 (2012), 479-510. doi: 10.1080/03605302.2011.641053.

[5]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009), 355-365. doi: 10.1142/S0219199709003399.

[6]

Y. ChoG. HwangS. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete and Continuous Dynamical Systems, 35 (2015), 2863-2880. doi: 10.3934/dcds.2015.35.2863.

[7]

V. D. Dinh, On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces, preprint, arXiv: 1701.00852.

[8]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867, arXiv: 1611.04195. doi: 10.1090/proc/13678.

[9]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacian in $ \mathbb{R}$, Acta Math., 210 (2013), 261-318. doi: 10.1007/s11511-013-0095-9.

[10]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726. doi: 10.1002/cpa.21591.

[11]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equation, J. Anal. Math., 124 (2014), 1-38. doi: 10.1007/s11854-014-0025-6.

[12]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional Schrodinger equation in the radial case, preprint, arXiv: 1310.6816.

[13]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Communications on Pure and Applied Analysis, 14 (2015), 2265-2282. doi: 10.3934/cpaa.2015.14.2265.

[14]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. App. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[15]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[16]

J. KriegerE. Lenzmann and P. Raphaël, Nondispersive solutions to the $ L^2$-critical half-wave equations, Arch. Ration. Mech. Anal., 209 (2013), 61-129. doi: 10.1007/s00205-013-0620-1.

[17]

N. Laskin, Fractional Schrödinger equation Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108.

[18]

T. Ogawa and Y. Tsutsumi, Blow-up of $ H^1$ solution for the nonlinear Schrödinger equation, J. Differ. Eqns., 92 (1991), 317-330. doi: 10.1016/0022-0396(91)90052-B.

[19]

E. M. Stein, Harmonic Analysis: Real-Variable Theory, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 2000.

[20]

T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial. Differ.Equ., 1 (2004), 1-47. doi: 10.4310/DPDE.2004.v1.n1.a1.

[1]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[2]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[3]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[4]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[5]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[6]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[7]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

[8]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[9]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[10]

Weiming Liu, Lu Gan. Multi-bump positive solutions of a fractional nonlinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2016, 15 (2) : 413-428. doi: 10.3934/cpaa.2016.15.413

[11]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[12]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[13]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[14]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[15]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[16]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267

[17]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

[18]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[19]

Xing Cheng, Ze Li, Lifeng Zhao. Scattering of solutions to the nonlinear Schrödinger equations with regular potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2999-3023. doi: 10.3934/dcds.2017129

[20]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (33)
  • HTML views (98)
  • Cited by (0)

Other articles
by authors

[Back to Top]