# American Institute of Mathematical Sciences

April 2018, 38(4): 2171-2185. doi: 10.3934/dcds.2018089

## Theory of rotated equations and applications to a population model

 1 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China 2 School of Mathematics Sciences, Qufu Normal University, Qufu 273165, China 3 Department of Mathematics, Shanghai Normal University Shanghai, Shanghai 200234, China 4 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China

* Corresponding author: Lijuan Sheng

Received  June 2017 Revised  July 2017 Published  January 2018

Fund Project: The first author is supported by National Natural Science Foundation of China (11431008 and 11771296)

We consider a family of scalar periodic equations with a parameter and establish theory of rotated equations, studying the behavior of periodic solutions with the change of the parameter. It is shown that a stable (completely unstable) periodic solution of a rotated equation varies monotonically with respect to the parameter and a semi-stable periodic solution splits into two periodic solutions or disappears as the parameter changes in one direction or another. As an application of the obtained results, we give a further study of a piecewise smooth population model verifying the existence of saddle-node bifurcation.

Citation: Maoan Han, Xiaoyan Hou, Lijuan Sheng, Chaoyang Wang. Theory of rotated equations and applications to a population model. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2171-2185. doi: 10.3934/dcds.2018089
##### References:
 [1] D. Batenkov and G. Binyamini, Uniform upper bounds for the cyclicity of the zero solution of the Abel differential equation, J. Differential Equations, 259 (2015), 5769-5781. doi: 10.1016/j.jde.2015.07.009. [2] F. Brauer and D. A. Sanchez, Periodic environments and periodic harvesting, Natural Resource Modeling, 16 (2003), 233-244. [3] F. Brauer and D. A. Sanchez, Constant rate population harvesting: Equilibrium and stability, Theoret. Pop. biol., 8 (1975), 12-30. doi: 10.1016/0040-5809(75)90036-2. [4] D. Campbell and S. R. Kaplan, A bifurcation problem in differential equations, Math. Mag., 73 (2000), 194-203. doi: 10.2307/2691522. [5] G. F. D. Duff, Limit cycles and rotated vector fields, Ann.of Math., 57 (1953), 15-31. doi: 10.2307/1969724. [6] J. Giné, J. Llibre, K. Wu and X. Zhang, Averaging methods of arbitrary order, periodic solutions and integrability, J. Differential Equations, 260 (2016), 4130-4156. doi: 10.1016/j.jde.2015.11.005. [7] M. Han and D. Zhu, Bifurcation Theory of Differential Equation, Coal Industry Publishing House, Beijing, 1994. [8] M. Han, Bifurcation Theory of Limit Cycles, Science Press Beijing, Beijing; Alpha Science International Ltd., Oxford, 2017. [9] M. Han, Global behavior of limit cycles in rotated vector fields, Journal of Differential Equations, 151 (1999), 20-35. doi: 10.1006/jdeq.1998.3508. [10] P. Liu, J. Shi and Y. Wang, Periodic solutions of a logistic type population model with harvesting, J. Math. Anal. Appl., 369 (2010), 730-735. doi: 10.1016/j.jmaa.2010.04.027. [11] S. Oruganti, J. Shi and R. Shivaji, Diffusive logistic equaiton with constant yield harvesting, I. Steady States, Trans. Amer. Math. Soc., 354 (2002), 3601-3619. doi: 10.1090/S0002-9947-02-03005-2. [12] D. Xiao, Dynamics and bifurcation on a class of population model with seasonal constant-yield harvesting, Discrete Contin. Dyn. Syst., 21 (2016), 699-719.

show all references

##### References:
 [1] D. Batenkov and G. Binyamini, Uniform upper bounds for the cyclicity of the zero solution of the Abel differential equation, J. Differential Equations, 259 (2015), 5769-5781. doi: 10.1016/j.jde.2015.07.009. [2] F. Brauer and D. A. Sanchez, Periodic environments and periodic harvesting, Natural Resource Modeling, 16 (2003), 233-244. [3] F. Brauer and D. A. Sanchez, Constant rate population harvesting: Equilibrium and stability, Theoret. Pop. biol., 8 (1975), 12-30. doi: 10.1016/0040-5809(75)90036-2. [4] D. Campbell and S. R. Kaplan, A bifurcation problem in differential equations, Math. Mag., 73 (2000), 194-203. doi: 10.2307/2691522. [5] G. F. D. Duff, Limit cycles and rotated vector fields, Ann.of Math., 57 (1953), 15-31. doi: 10.2307/1969724. [6] J. Giné, J. Llibre, K. Wu and X. Zhang, Averaging methods of arbitrary order, periodic solutions and integrability, J. Differential Equations, 260 (2016), 4130-4156. doi: 10.1016/j.jde.2015.11.005. [7] M. Han and D. Zhu, Bifurcation Theory of Differential Equation, Coal Industry Publishing House, Beijing, 1994. [8] M. Han, Bifurcation Theory of Limit Cycles, Science Press Beijing, Beijing; Alpha Science International Ltd., Oxford, 2017. [9] M. Han, Global behavior of limit cycles in rotated vector fields, Journal of Differential Equations, 151 (1999), 20-35. doi: 10.1006/jdeq.1998.3508. [10] P. Liu, J. Shi and Y. Wang, Periodic solutions of a logistic type population model with harvesting, J. Math. Anal. Appl., 369 (2010), 730-735. doi: 10.1016/j.jmaa.2010.04.027. [11] S. Oruganti, J. Shi and R. Shivaji, Diffusive logistic equaiton with constant yield harvesting, I. Steady States, Trans. Amer. Math. Soc., 354 (2002), 3601-3619. doi: 10.1090/S0002-9947-02-03005-2. [12] D. Xiao, Dynamics and bifurcation on a class of population model with seasonal constant-yield harvesting, Discrete Contin. Dyn. Syst., 21 (2016), 699-719.
Local behavior of stable or completely unstable periodic solution
Local behavior of semi-stable periodic solution
Asymptotic behavior of solutions for $\lambda>\lambda_0$
Local behavior near a semi-stable periodic solution
Behavior of solutions as $\lambda>\lambda^*$ and $x_0>K$ or $x_0<0$
Behavior of $\varphi_s(t,\lambda)$ and $\varphi_u(t,\lambda)$
Behavior of solutions as $\lambda<0$
Behavior of periodic solutions as $\lambda$ varies
 behavior of periodic solution stable completely unstable upper-stable lower-unstable upper-unstable lower-stable $\frac{\partial f}{\partial \lambda}\geq 0$ increasing with $\lambda$ increasing increasing with $\lambda$ decreasing split with $\lambda$ increasing disappears with $\lambda$ increasing $\frac{\partial f}{\partial \lambda}\leq 0$ increasing with $\lambda$ decreasing increasing with $\lambda$ increasing disappears with $\lambda$ increasing split with $\lambda$ increasing
 behavior of periodic solution stable completely unstable upper-stable lower-unstable upper-unstable lower-stable $\frac{\partial f}{\partial \lambda}\geq 0$ increasing with $\lambda$ increasing increasing with $\lambda$ decreasing split with $\lambda$ increasing disappears with $\lambda$ increasing $\frac{\partial f}{\partial \lambda}\leq 0$ increasing with $\lambda$ decreasing increasing with $\lambda$ increasing disappears with $\lambda$ increasing split with $\lambda$ increasing
 [1] Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419 [2] Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923 [3] Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203 [4] Ale Jan Homburg, Todd Young. Intermittency and Jakobson's theorem near saddle-node bifurcations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 21-58. doi: 10.3934/dcds.2007.17.21 [5] W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351 [6] Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069 [7] Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205 [8] Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233 [9] Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665 [10] Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911 [11] Jongmin Han, Chun-Hsiung Hsia. Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2431-2449. doi: 10.3934/dcdsb.2012.17.2431 [12] Alexandre A. P. Rodrigues. Moduli for heteroclinic connections involving saddle-foci and periodic solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3155-3182. doi: 10.3934/dcds.2015.35.3155 [13] Julián López-Gómez, Marcela Molina-Meyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 923-946. doi: 10.3934/dcdsb.2017047 [14] Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012 [15] Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268 [16] Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 47-66. doi: 10.3934/dcdss.2020003 [17] Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024 [18] Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 [19] Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-35. doi: 10.3934/dcdsb.2018290 [20] Guy Cohen, Jean-Pierre Conze. The CLT for rotated ergodic sums and related processes. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3981-4002. doi: 10.3934/dcds.2013.33.3981

2017 Impact Factor: 1.179