2018, 38(4): 2093-2123. doi: 10.3934/dcds.2018086

Invariance entropy, quasi-stationary measures and control sets

Institut für Mathematik, Universität Augsburg, Universitätsstrasse 14,86159 Augsburg, Germany

Received  May 2017 Revised  October 2017 Published  January 2018

Fund Project: Research supported by DFG grant 124/19-2

For control systems in discrete time, this paper discusses measure-theoretic invariance entropy for a subset Q of the state space with respect to a quasi-stationary measure obtained by endowing the control range with a probability measure. The main results show that this entropy is invariant under measurable transformations and that it is already determined by certain subsets of Q which are characterized by controllability properties.

Citation: Fritz Colonius. Invariance entropy, quasi-stationary measures and control sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2093-2123. doi: 10.3934/dcds.2018086
References:
[1]

F. Albertini and E. D. Sontag, Some connections between chaotic dynamical systems and control systems, in Proc. European Control Conference, Grenoble, 1991,158-163.

[2]

———, Discrete-time transitivity and accessibility: Analytic systems, SIAM J. Control Optim., 31 (1993), 1599-1622. doi: 10.1137/0331075.

[3]

M. Benaïm, B. Cloez and F. Panloup, Stochastic Approximation of Quasi-Stationary Distributions on Compact Spaces and Applications, arXiv: 1606.06477v2 [math. PR] 6 Dec 2016.

[4]

T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical systems, Random and Computational Dynamics, 1 (1992/93), 99-116.

[5]

P. Collett, S. Martinez and J. San Martin, Quasi-Stationary Distributions: Markov Chains, Diffusions, and Dynamical Systems, Springer-Verlag, Berlin, 2013.

[6]

F. Colonius, Metric invariance entropy and conditionally invariant measures Ergodic Theory and Dynamical Systems, (2016). First published online: 20 October 2016. doi: 10.1017/etds.2016.72.

[7]

———, Metric Invariance Entropy and Relatively Invariant Control Sets, in Proceedings of the 55th IEEE Conference on Decision and Control (Las Vegas, December 12-14,2016), 2016.

[8]

F. ColoniusJ.-A. Homburg and W. Kliemann, Near invariance and local transience for random diffeomorphisms, J. Difference Equations and Applications, 16 (2010), 127-141. doi: 10.1080/10236190802653646.

[9]

F. Colonius and R. Lettau, Relative controllability properties, IMA Journal of Mathematical Control and Information, 33 (2016), 701-722. doi: 10.1093/imamci/dnv004.

[10]

A. da Silva and C. Kawan, Invariance entropy of hyperbolic control sets, Discrete Cont. Dyn. Syst. A, 36 (2016), 97-136.

[11]

M. F. Demers, Introductory Lectures on Open Systems, given as part of the LMS-CMI Research School at Loughborough University, April 13-17,2015.

[12]

M. F. Demers and L.-S. Young, Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006), 377-397. doi: 10.1088/0951-7715/19/2/008.

[13]

E.A. van Doorn and P. Pollett, Quasi-stationary distributions for reducible absorbing Markov chains in discrete time, Markov Processes and Related Fields, 15 (2009), 191-204.

[14]

B. Jakubczyk and E.D. Sontag, Controllability of nonlinear discrete time systems: A Lie algebraic approach, SIAM J. Control Optim., 28 (1990), 1-33. doi: 10.1137/0328001.

[15]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.

[16]

C. Kawan, Invariance entropy of control sets, SIAM J. Control Optim., 49 (2011), 732-751. doi: 10.1137/100783340.

[17]

———, Invariance Entropy for Deterministic Control Systems. An Introduction, vol. 2089 of Lecture Notes in Mathematics, Springer-Verlag, 2013.

[18]

S. Méléard and D. Villemonais, Quasi-stationary distributions and population processes, Probability Surveys, 9 (2012), 340-410. doi: 10.1214/11-PS191.

[19]

G. NairR.J. EvansI. Mareels and W. Moran, Topological feedback entropy and nonlinear stabilization, IEEE Trans. Aut. Control, 49 (2004), 1585-1597. doi: 10.1109/TAC.2004.834105.

[20]

M. Patrão and L. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups, J. Dyn. Diff. Equations, 19 (2007), 155-180.

[21]

P. Pollett, Quasi-stationary distributions: a bibliography. http://www.maths.uq.edu.au/~pkp/papers/qsds/qsds.pdf, 2015.

[22]

F. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions, Journal Math. Phys. , 57 (2016), 052704, 27pp.

[23]

E. Sontag and F. Wirth, Remarks on universal nonsingular controls for discrete-time systems, Sys. Control Lett., 33 (1998), 81-88. doi: 10.1016/S0167-6911(97)00117-5.

[24]

M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge University Press, 2016.

[25]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 1982.

[26]

F. Wirth, Robust Stability of Discrete-Time Systems under Time-Varying Perturbations, PhD thesis, Fachbereich Mathematik/Informatik, Universität Bremen, 1995.

[27]

F. Wirth, Dynamics and controllability of nonlinear discrete-time control systems, IFAC Proceedings Volumes, 31 (1998), 267-272. doi: 10.1016/S1474-6670(17)40346-6.

show all references

References:
[1]

F. Albertini and E. D. Sontag, Some connections between chaotic dynamical systems and control systems, in Proc. European Control Conference, Grenoble, 1991,158-163.

[2]

———, Discrete-time transitivity and accessibility: Analytic systems, SIAM J. Control Optim., 31 (1993), 1599-1622. doi: 10.1137/0331075.

[3]

M. Benaïm, B. Cloez and F. Panloup, Stochastic Approximation of Quasi-Stationary Distributions on Compact Spaces and Applications, arXiv: 1606.06477v2 [math. PR] 6 Dec 2016.

[4]

T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical systems, Random and Computational Dynamics, 1 (1992/93), 99-116.

[5]

P. Collett, S. Martinez and J. San Martin, Quasi-Stationary Distributions: Markov Chains, Diffusions, and Dynamical Systems, Springer-Verlag, Berlin, 2013.

[6]

F. Colonius, Metric invariance entropy and conditionally invariant measures Ergodic Theory and Dynamical Systems, (2016). First published online: 20 October 2016. doi: 10.1017/etds.2016.72.

[7]

———, Metric Invariance Entropy and Relatively Invariant Control Sets, in Proceedings of the 55th IEEE Conference on Decision and Control (Las Vegas, December 12-14,2016), 2016.

[8]

F. ColoniusJ.-A. Homburg and W. Kliemann, Near invariance and local transience for random diffeomorphisms, J. Difference Equations and Applications, 16 (2010), 127-141. doi: 10.1080/10236190802653646.

[9]

F. Colonius and R. Lettau, Relative controllability properties, IMA Journal of Mathematical Control and Information, 33 (2016), 701-722. doi: 10.1093/imamci/dnv004.

[10]

A. da Silva and C. Kawan, Invariance entropy of hyperbolic control sets, Discrete Cont. Dyn. Syst. A, 36 (2016), 97-136.

[11]

M. F. Demers, Introductory Lectures on Open Systems, given as part of the LMS-CMI Research School at Loughborough University, April 13-17,2015.

[12]

M. F. Demers and L.-S. Young, Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006), 377-397. doi: 10.1088/0951-7715/19/2/008.

[13]

E.A. van Doorn and P. Pollett, Quasi-stationary distributions for reducible absorbing Markov chains in discrete time, Markov Processes and Related Fields, 15 (2009), 191-204.

[14]

B. Jakubczyk and E.D. Sontag, Controllability of nonlinear discrete time systems: A Lie algebraic approach, SIAM J. Control Optim., 28 (1990), 1-33. doi: 10.1137/0328001.

[15]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.

[16]

C. Kawan, Invariance entropy of control sets, SIAM J. Control Optim., 49 (2011), 732-751. doi: 10.1137/100783340.

[17]

———, Invariance Entropy for Deterministic Control Systems. An Introduction, vol. 2089 of Lecture Notes in Mathematics, Springer-Verlag, 2013.

[18]

S. Méléard and D. Villemonais, Quasi-stationary distributions and population processes, Probability Surveys, 9 (2012), 340-410. doi: 10.1214/11-PS191.

[19]

G. NairR.J. EvansI. Mareels and W. Moran, Topological feedback entropy and nonlinear stabilization, IEEE Trans. Aut. Control, 49 (2004), 1585-1597. doi: 10.1109/TAC.2004.834105.

[20]

M. Patrão and L. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups, J. Dyn. Diff. Equations, 19 (2007), 155-180.

[21]

P. Pollett, Quasi-stationary distributions: a bibliography. http://www.maths.uq.edu.au/~pkp/papers/qsds/qsds.pdf, 2015.

[22]

F. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions, Journal Math. Phys. , 57 (2016), 052704, 27pp.

[23]

E. Sontag and F. Wirth, Remarks on universal nonsingular controls for discrete-time systems, Sys. Control Lett., 33 (1998), 81-88. doi: 10.1016/S0167-6911(97)00117-5.

[24]

M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge University Press, 2016.

[25]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 1982.

[26]

F. Wirth, Robust Stability of Discrete-Time Systems under Time-Varying Perturbations, PhD thesis, Fachbereich Mathematik/Informatik, Universität Bremen, 1995.

[27]

F. Wirth, Dynamics and controllability of nonlinear discrete-time control systems, IFAC Proceedings Volumes, 31 (1998), 267-272. doi: 10.1016/S1474-6670(17)40346-6.

Figure .  Extremal graphs for (24) and the set $[d(\alpha),0.5]$ in $Q = [0.2,0.5\dot{]}$ (here $A = 0.05,\sigma = 0.1$ and $\alpha = 0.08$)
Figure .  Extremal graphs for (44) and the $W$-control sets $D_1(\alpha) = [a(\alpha),b(\alpha))$ and $D_2(\alpha) = [d(\alpha),0.7)$ in $Q = [0.1,0.7\dot {]}$ (here $A = 0.05,\sigma = 0.1$ and $\alpha = 0.08$)
[1]

Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97

[2]

Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361

[3]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[4]

Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235

[5]

Peter E. Kloeden. Asymptotic invariance and the discretisation of nonautonomous forward attracting sets. Journal of Computational Dynamics, 2016, 3 (2) : 179-189. doi: 10.3934/jcd.2016009

[6]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[7]

S. Astels. Thickness measures for Cantor sets. Electronic Research Announcements, 1999, 5: 108-111.

[8]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[9]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

[10]

Mario Roldan. Hyperbolic sets and entropy at the homological level. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3417-3433. doi: 10.3934/dcds.2016.36.3417

[11]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[12]

Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1) : 1-23. doi: 10.3934/jcd.2017004

[13]

Victor Ayala, Adriano Da Silva, Luiz A. B. San Martin. Control systems on flag manifolds and their chain control sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2301-2313. doi: 10.3934/dcds.2017101

[14]

Wael Bahsoun, Christopher Bose. Quasi-invariant measures, escape rates and the effect of the hole. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1107-1121. doi: 10.3934/dcds.2010.27.1107

[15]

Masayuki Asaoka, Kenichiro Yamamoto. On the large deviation rates of non-entropy-approachable measures. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4401-4410. doi: 10.3934/dcds.2013.33.4401

[16]

Jairo Bochi, Michal Rams. The entropy of Lyapunov-optimizing measures of some matrix cocycles. Journal of Modern Dynamics, 2016, 10: 255-286. doi: 10.3934/jmd.2016.10.255

[17]

Vítor Araújo. Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 371-386. doi: 10.3934/dcds.2007.17.371

[18]

Peidong Liu, Kening Lu. A note on partially hyperbolic attractors: Entropy conjecture and SRB measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 341-352. doi: 10.3934/dcds.2015.35.341

[19]

Hiroki Sumi, Mariusz Urbański. Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 313-363. doi: 10.3934/dcds.2011.30.313

[20]

Roberta Fabbri, Sylvia Novo, Carmen Núñez, Rafael Obaya. Null controllable sets and reachable sets for nonautonomous linear control systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1069-1094. doi: 10.3934/dcdss.2016042

2016 Impact Factor: 1.099

Article outline

Figures and Tables

[Back to Top]