
-
Previous Article
Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems
- DCDS Home
- This Issue
-
Next Article
The return times property for the tail on logarithm-type spaces
Well-posedness of a model for the growth of tree stems and vines
Department of Mathematics, Penn State University, University Park, PA, 16802, USA |
The paper studies a PDE model for the growth of a tree stem or a vine, having the form of a differential inclusion with state constraints. The equations describe the elongation due to cell growth, and the response to gravity and to external obstacles.
The main theorem shows that the evolution problem is well posed, until a specific "breakdown configuration" is reached. A formula is proved, characterizing the reaction produced by unilateral constraints. At a.e. time $t$, this is determined by the minimization of an elastic energy functional under suitable constraints.
References:
[1] |
A. Bressan, M. Palladino and W. Shen,
Growth models for tree stems and vines, J. Differential Equations, 263 (2017), 2280-2316.
doi: 10.1016/j.jde.2017.03.047. |
[2] |
L. Cesari,
Optimization -Theory and Applications, Springer-Verlag, 1983. |
[3] |
G. Colombo and V. Goncharov,
The sweeping processes without convexity, Set-Valued Anal., 7 (1999), 357-374.
doi: 10.1023/A:1008774529556. |
[4] |
G. Colombo and M. Monteiro Marques,
Sweeping by a continuous prox-regular set, J. Differential Equations, 187 (2003), 46-62.
doi: 10.1016/S0022-0396(02)00021-9. |
[5] |
O. Leyser and S. Day, Mechanisms in Plant Development, Blackwell Publishing, 2003. |
[6] |
J. J. Moreau,
Evolution problems associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 347-374.
doi: 10.1016/0022-0396(77)90085-7. |
[7] |
R. Rossi and U. Stefanelli,
An order approach to a class of quasivariational sweeping processes, Adv. Diff. Equat., 10 (2005), 527-552.
|
[8] |
show all references
References:
[1] |
A. Bressan, M. Palladino and W. Shen,
Growth models for tree stems and vines, J. Differential Equations, 263 (2017), 2280-2316.
doi: 10.1016/j.jde.2017.03.047. |
[2] |
L. Cesari,
Optimization -Theory and Applications, Springer-Verlag, 1983. |
[3] |
G. Colombo and V. Goncharov,
The sweeping processes without convexity, Set-Valued Anal., 7 (1999), 357-374.
doi: 10.1023/A:1008774529556. |
[4] |
G. Colombo and M. Monteiro Marques,
Sweeping by a continuous prox-regular set, J. Differential Equations, 187 (2003), 46-62.
doi: 10.1016/S0022-0396(02)00021-9. |
[5] |
O. Leyser and S. Day, Mechanisms in Plant Development, Blackwell Publishing, 2003. |
[6] |
J. J. Moreau,
Evolution problems associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 347-374.
doi: 10.1016/0022-0396(77)90085-7. |
[7] |
R. Rossi and U. Stefanelli,
An order approach to a class of quasivariational sweeping processes, Adv. Diff. Equat., 10 (2005), 527-552.
|
[8] |



[1] |
Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17 |
[2] |
Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057 |
[3] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[4] |
Piermarco Cannarsa, Vilmos Komornik, Paola Loreti. One-sided and internal controllability of semilinear wave equations with infinitely iterated logarithms. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 745-756. doi: 10.3934/dcds.2002.8.747 |
[5] |
Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160 |
[6] |
Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541 |
[7] |
Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191 |
[8] |
Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065 |
[9] |
Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977 |
[10] |
Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693 |
[11] |
Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119 |
[12] |
Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015 |
[13] |
Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053 |
[14] |
Luis Barreira, Davor Dragičević, Claudia Valls. From one-sided dichotomies to two-sided dichotomies. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2817-2844. doi: 10.3934/dcds.2015.35.2817 |
[15] |
Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907 |
[16] |
Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517 |
[17] |
Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069 |
[18] |
Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741 |
[19] |
Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529 |
[20] |
Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17 |
2017 Impact Factor: 1.179
Tools
Metrics
Other articles
by authors
[Back to Top]