• Previous Article
    Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouville rotation behavior
  • DCDS Home
  • This Issue
  • Next Article
    Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain
2018, 38(4): 1657-1667. doi: 10.3934/dcds.2018068

Periodic measures are dense in invariant measures for residually finite amenable group actions with specification

1. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

2. 

Department of Mathematics, SUNY at Buffalo, Buffalo, NY 14260-2900, USA

Received  January 2016 Revised  October 2017 Published  January 2018

Fund Project: The author is supported by NNSFC grant No.11471344.

We prove that for actions of a discrete countable residuallyfinite amenable group on a compact metric space with specification property, periodic measures are dense in theset of invariant measures. We also prove that certain expansiveactions of a countable discrete group by automorphisms of compact abelian groups have specification property.

Citation: Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068
References:
[1]

M. Abért, A. Jaikin-Zapirain, N. Nikolay, The rank gradient from a combinatorial viewpoint, Groups Geom. Dyn., 5 (2011), 213-230. doi: 10.4171/GGD/124.

[2]

F. Abdenur, C. Bonatti, S. Crovisier, Nonuniform hyperbolicity for C$^{1}$-generic diffeomorphisms, Israel J. Math., 183 (2011), 1-60. doi: 10.1007/s11856-011-0041-5.

[3]

R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.

[4]

B. F. Bryant, On expansive homeomorphisms, Pacific J. Math., 10 (1960), 1163-1167. doi: 10.2140/pjm.1960.10.1163.

[5]

T. Ceccherini-Silberstein and M. Coornaert, Cellular Automata and Groups, Springer Monographs in Mathematics, Springer-Verlag, New York, Berlin, 2010. doi: 978-3-642-14033-4.

[6]

N. P. Chung, H. Li, Homoclinic group, IE group, and expansive algebraic actions, Invent. Math., 199 (2015), 805-858. doi: 10.1007/s00222-014-0524-1.

[7]

M. Coornaert, Topological Dimension and Dynamical Systems, Universitext, Springer, Cham, 2015. doi: 978-3-319-19793-7.

[8]

C. Deninger, K. Schmidt, Expansive algebraic of discrete residually finite amenable groups and their entropy, Ergod. Th. Dynamical Sys., 27 (2007), 769-786. doi: 10.1017/S0143385706000939.

[9]

M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics, Vol. 527. Springer-Verlag, Berlin-New York, 1976.

[10]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, vol. 259, Springer-Verlag London Ltd., London, 2011. doi: 978-0-85729-020-5.

[11]

M. Hirayama, Periodic probability measures are dense in the set of invariant measures, Dist. Cont. Dyn. Sys., 9 (2003), 1185-1192. doi: 10.3934/dcds.2003.9.1185.

[12]

W. Huang, X. Ye, G. Zhang, Local entropy for a countable discrete amenable group action, J. Funct. Anal., 261 (2011), 1028-1082. doi: 10.1016/j.jfa.2011.04.014.

[13]

C. Liang, G. Liu, W. Sun, Approxiamation properties on invariant measures and Oseledec splitting in non-uniformly hyperbolic systems, Trans. Amer. Math. Soc., 361 (2009), 1543-1579.

[14]

E. Lindenstrauss, Pointwise theorems for amenable groups, Electronic Research Announcements of the American Mathematical Society, 5 (1999), 82-90. doi: 10.1090/S1079-6762-99-00065-7.

[15]

E. Lindenstauss, Pointwise theorems for amenable groups, Invention. Math., 146 (2001), 259-295. doi: 10.1007/s002220100162.

[16]

K. Oliverira, X. Tian, Non-uniform hyperbolicity and non-uniform specification, Trans. Amer. Math. Soc., 365 (2013), 4371-4392. doi: 10.1090/S0002-9947-2013-05819-9.

[17]

D. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48 (1987), 1-141. doi: 10.1007/BF02790325.

[18]

C.-E. Pfister, W. Sullivan, On the topological entropy of saturated sets, Ergod. Th. Dynamical Sys., 27 (2007), 929-956. doi: 10.1017/S0143385706000824.

[19]

D. Ruelle, Statisticle mechanics on a compact set with $Z^{ν}$ actions satisfying expansiveness and specification, Trans. Amer. Math. Soc., 187 (1973), 237-251.

[20]

K. Sigmund, Generic properties of invariant measures for Axiom A-diffeomorphisms, Invent. Math., 11 (1970), 99-109. doi: 10.1007/BF01404606.

[21]

K. Sigmund, On dynamical systems with specification property, Trans, Amer, Math. Soc., 190 (1974), 285-299. doi: 10.1090/S0002-9947-1974-0352411-X.

[22]

D. Tompson, Irregular sets, the beta-transformation and the almost specification property, Trans. Am. Math. Soc., 364 (2012), 5395-5414. doi: 10.1090/S0002-9947-2012-05540-1.

[23]

T. Ward, Q. Zhang, The Abramov-Rokhlin entropy addition formular for amenable group actions, Monatsh. Math., 114 (1992), 317-329. doi: 10.1007/BF01299386.

[24]

B. Weiss, Monotileable amenable groups, Topology, Ergodic Theory, Real Algebraic Geometry, in: Amer. Math. Soc. Transl. Ser. 2, vol. 202, Amer. Math. Soc., Providence, RI, (2001), 257-262.

[25]

D. Zheng, E. Chen and J. Yang, On large deviations for amenable group actions, Discrete Contin. Dyn. Syst., 36 (2016), 7191-7206, arXiv:1507.05130. doi: 10.3934/dcds.2016113.

show all references

References:
[1]

M. Abért, A. Jaikin-Zapirain, N. Nikolay, The rank gradient from a combinatorial viewpoint, Groups Geom. Dyn., 5 (2011), 213-230. doi: 10.4171/GGD/124.

[2]

F. Abdenur, C. Bonatti, S. Crovisier, Nonuniform hyperbolicity for C$^{1}$-generic diffeomorphisms, Israel J. Math., 183 (2011), 1-60. doi: 10.1007/s11856-011-0041-5.

[3]

R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.

[4]

B. F. Bryant, On expansive homeomorphisms, Pacific J. Math., 10 (1960), 1163-1167. doi: 10.2140/pjm.1960.10.1163.

[5]

T. Ceccherini-Silberstein and M. Coornaert, Cellular Automata and Groups, Springer Monographs in Mathematics, Springer-Verlag, New York, Berlin, 2010. doi: 978-3-642-14033-4.

[6]

N. P. Chung, H. Li, Homoclinic group, IE group, and expansive algebraic actions, Invent. Math., 199 (2015), 805-858. doi: 10.1007/s00222-014-0524-1.

[7]

M. Coornaert, Topological Dimension and Dynamical Systems, Universitext, Springer, Cham, 2015. doi: 978-3-319-19793-7.

[8]

C. Deninger, K. Schmidt, Expansive algebraic of discrete residually finite amenable groups and their entropy, Ergod. Th. Dynamical Sys., 27 (2007), 769-786. doi: 10.1017/S0143385706000939.

[9]

M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics, Vol. 527. Springer-Verlag, Berlin-New York, 1976.

[10]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, vol. 259, Springer-Verlag London Ltd., London, 2011. doi: 978-0-85729-020-5.

[11]

M. Hirayama, Periodic probability measures are dense in the set of invariant measures, Dist. Cont. Dyn. Sys., 9 (2003), 1185-1192. doi: 10.3934/dcds.2003.9.1185.

[12]

W. Huang, X. Ye, G. Zhang, Local entropy for a countable discrete amenable group action, J. Funct. Anal., 261 (2011), 1028-1082. doi: 10.1016/j.jfa.2011.04.014.

[13]

C. Liang, G. Liu, W. Sun, Approxiamation properties on invariant measures and Oseledec splitting in non-uniformly hyperbolic systems, Trans. Amer. Math. Soc., 361 (2009), 1543-1579.

[14]

E. Lindenstrauss, Pointwise theorems for amenable groups, Electronic Research Announcements of the American Mathematical Society, 5 (1999), 82-90. doi: 10.1090/S1079-6762-99-00065-7.

[15]

E. Lindenstauss, Pointwise theorems for amenable groups, Invention. Math., 146 (2001), 259-295. doi: 10.1007/s002220100162.

[16]

K. Oliverira, X. Tian, Non-uniform hyperbolicity and non-uniform specification, Trans. Amer. Math. Soc., 365 (2013), 4371-4392. doi: 10.1090/S0002-9947-2013-05819-9.

[17]

D. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48 (1987), 1-141. doi: 10.1007/BF02790325.

[18]

C.-E. Pfister, W. Sullivan, On the topological entropy of saturated sets, Ergod. Th. Dynamical Sys., 27 (2007), 929-956. doi: 10.1017/S0143385706000824.

[19]

D. Ruelle, Statisticle mechanics on a compact set with $Z^{ν}$ actions satisfying expansiveness and specification, Trans. Amer. Math. Soc., 187 (1973), 237-251.

[20]

K. Sigmund, Generic properties of invariant measures for Axiom A-diffeomorphisms, Invent. Math., 11 (1970), 99-109. doi: 10.1007/BF01404606.

[21]

K. Sigmund, On dynamical systems with specification property, Trans, Amer, Math. Soc., 190 (1974), 285-299. doi: 10.1090/S0002-9947-1974-0352411-X.

[22]

D. Tompson, Irregular sets, the beta-transformation and the almost specification property, Trans. Am. Math. Soc., 364 (2012), 5395-5414. doi: 10.1090/S0002-9947-2012-05540-1.

[23]

T. Ward, Q. Zhang, The Abramov-Rokhlin entropy addition formular for amenable group actions, Monatsh. Math., 114 (1992), 317-329. doi: 10.1007/BF01299386.

[24]

B. Weiss, Monotileable amenable groups, Topology, Ergodic Theory, Real Algebraic Geometry, in: Amer. Math. Soc. Transl. Ser. 2, vol. 202, Amer. Math. Soc., Providence, RI, (2001), 257-262.

[25]

D. Zheng, E. Chen and J. Yang, On large deviations for amenable group actions, Discrete Contin. Dyn. Syst., 36 (2016), 7191-7206, arXiv:1507.05130. doi: 10.3934/dcds.2016113.

[1]

Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082

[2]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[3]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

[4]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[5]

Brandon Seward. Every action of a nonamenable group is the factor of a small action. Journal of Modern Dynamics, 2014, 8 (2) : 251-270. doi: 10.3934/jmd.2014.8.251

[6]

Jinjun Li, Min Wu. Divergence points in systems satisfying the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 905-920. doi: 10.3934/dcds.2013.33.905

[7]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[8]

Jinjun Li, Min Wu. Generic property of irregular sets in systems satisfying the specification property. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 635-645. doi: 10.3934/dcds.2014.34.635

[9]

S. A. Krat. On pairs of metrics invariant under a cocompact action of a group. Electronic Research Announcements, 2001, 7: 79-86.

[10]

Manfred G. Madritsch, Izabela Petrykiewicz. Non-normal numbers in dynamical systems fulfilling the specification property. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4751-4764. doi: 10.3934/dcds.2014.34.4751

[11]

Lidong Wang, Hui Wang, Guifeng Huang. Minimal sets and $\omega$-chaos in expansive systems with weak specification property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1231-1238. doi: 10.3934/dcds.2015.35.1231

[12]

Carlos Matheus, Jean-Christophe Yoccoz. The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis. Journal of Modern Dynamics, 2010, 4 (3) : 453-486. doi: 10.3934/jmd.2010.4.453

[13]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[14]

Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139

[15]

Rostyslav Kravchenko. The action of finite-state tree automorphisms on Bernoulli measures. Journal of Modern Dynamics, 2010, 4 (3) : 443-451. doi: 10.3934/jmd.2010.4.443

[16]

Sergey Popov, Volker Reitmann. Frequency domain conditions for finite-dimensional projectors and determining observations for the set of amenable solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 249-267. doi: 10.3934/dcds.2014.34.249

[17]

Evgeny L. Korotyaev. Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 219-225. doi: 10.3934/dcds.2011.30.219

[18]

Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215

[19]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[20]

John Fogarty. On Noether's bound for polynomial invariants of a finite group. Electronic Research Announcements, 2001, 7: 5-7.

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (11)
  • HTML views (32)
  • Cited by (0)

Other articles
by authors

[Back to Top]