March 2018, 38(3): 1553-1565. doi: 10.3934/dcds.2018064

On the universality of the incompressible Euler equation on compact manifolds

UCLA Department of Mathematics, Los Angeles, CA 90095-1555, USA

Received  July 2017 Published  December 2017

The incompressible Euler equations on a compact Riemannian manifold
$(M,g)$
take the form
$\partial_t u + \nabla_u u =- \mathrm{grad}_g p \\\mathrm{div}_g u =0.$
We show that any quadratic ODE
$\partial_t y =B(y,y)$
, where
$B \colon \mathbb{R}^n × \mathbb{R}^n \to \mathbb{R}^n$
is a symmetric bilinear map, can be linearly embedded into the incompressible Euler equations for some manifold
$M$
if and only if
$B$
obeys the cancellation condition
$\langle B(y,y), y \rangle =0$
for some positive definite inner product
$\langle,\rangle$
on
$\mathbb{R}^n$
. This allows one to construct explicit solutions to the Euler equations with various dynamical features, such as quasiperiodic solutions, or solutions that transition from one steady state to another, and provides evidence for the "Turing universality" of such Euler flows.
Citation: Terence Tao. On the universality of the incompressible Euler equation on compact manifolds. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1553-1565. doi: 10.3934/dcds.2018064
References:
[1]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16 (1966), 319-361. doi: 10.5802/aif.233.

[2]

M. S. AshbaughC. C. Chicone and R. H. Cushman, The twisting tennis racket, J. Dyn. Diff. Eq., 3 (1991), 67-85. doi: 10.1007/BF01049489.

[3]

T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani, Dynamical Systems Approach to Turbulence, Cambridge University Press, 1998.

[4]

S. Bromberg and A. Medina, Completeness of homogeneous quadratic vector fields, Qual. Theory Dyn. Syst., 6 (2005), 181-185. doi: 10.1007/BF02972671.

[5]

R. J. Dickson and L. M. Perko, Bounded quadratic systems in the plane, J. of Diff. Equs., 7 (1990), 251-273. doi: 10.1016/0022-0396(70)90110-5.

[6]

E. I. Dinaburg and Ya. G. Sinai, A quasilinear approximation for the three-dimensional Navier-Stokes system, Moscow Math. J., 1 (2001), 381-388.

[7]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math.(2), 92 (1970), 102-163. doi: 10.2307/1970699.

[8]

S. Friedlander and N. Pavlovic, Blow-up in a three-dimensional vector model for the Euler equations, Comm. Pure Appl. Math., 57 (2004), 705-725. doi: 10.1002/cpa.20017.

[9]

U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, 1995.

[10]

E. B. Gledzer, System of hydrodynamic type admitting two quadratic integrals of motion, Sov. Phys. Dokl., 18 (1973), 216-217.

[11]

J. L. Kaplan and J. A. Yorke, Non associative real algebras and quadratic differential equations, Nonlinear Analysis, 3 (1979), 49-51. doi: 10.1016/0362-546X(79)90033-6.

[12]

N. H. Katz and N. Pavlović, Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc., 357 (2005), 695-708. doi: 10.1090/S0002-9947-04-03532-9.

[13]

K. Okhitani and M. Yamada, Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence, Prog. Theor. Phys., 89 (1989), 329-341. doi: 10.1143/PTP.81.329.

[14]

T. Tao, Finite time blowup for an averaged three-dimensional Navier-Stokes equation, J. Amer. Math. Soc., 29 (2016), 601-674.

[15]

T. Tao, On the universality of potential well dynamics, Dynamics of Partial Differential Equations, 14 (2017), 219-238. doi: 10.4310/DPDE.2017.v14.n3.a1.

show all references

References:
[1]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16 (1966), 319-361. doi: 10.5802/aif.233.

[2]

M. S. AshbaughC. C. Chicone and R. H. Cushman, The twisting tennis racket, J. Dyn. Diff. Eq., 3 (1991), 67-85. doi: 10.1007/BF01049489.

[3]

T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani, Dynamical Systems Approach to Turbulence, Cambridge University Press, 1998.

[4]

S. Bromberg and A. Medina, Completeness of homogeneous quadratic vector fields, Qual. Theory Dyn. Syst., 6 (2005), 181-185. doi: 10.1007/BF02972671.

[5]

R. J. Dickson and L. M. Perko, Bounded quadratic systems in the plane, J. of Diff. Equs., 7 (1990), 251-273. doi: 10.1016/0022-0396(70)90110-5.

[6]

E. I. Dinaburg and Ya. G. Sinai, A quasilinear approximation for the three-dimensional Navier-Stokes system, Moscow Math. J., 1 (2001), 381-388.

[7]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math.(2), 92 (1970), 102-163. doi: 10.2307/1970699.

[8]

S. Friedlander and N. Pavlovic, Blow-up in a three-dimensional vector model for the Euler equations, Comm. Pure Appl. Math., 57 (2004), 705-725. doi: 10.1002/cpa.20017.

[9]

U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, 1995.

[10]

E. B. Gledzer, System of hydrodynamic type admitting two quadratic integrals of motion, Sov. Phys. Dokl., 18 (1973), 216-217.

[11]

J. L. Kaplan and J. A. Yorke, Non associative real algebras and quadratic differential equations, Nonlinear Analysis, 3 (1979), 49-51. doi: 10.1016/0362-546X(79)90033-6.

[12]

N. H. Katz and N. Pavlović, Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc., 357 (2005), 695-708. doi: 10.1090/S0002-9947-04-03532-9.

[13]

K. Okhitani and M. Yamada, Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence, Prog. Theor. Phys., 89 (1989), 329-341. doi: 10.1143/PTP.81.329.

[14]

T. Tao, Finite time blowup for an averaged three-dimensional Navier-Stokes equation, J. Amer. Math. Soc., 29 (2016), 601-674.

[15]

T. Tao, On the universality of potential well dynamics, Dynamics of Partial Differential Equations, 14 (2017), 219-238. doi: 10.4310/DPDE.2017.v14.n3.a1.

[1]

Flavia Antonacci, Marco Degiovanni. On the Euler equation for minimal geodesics on Riemannian manifoldshaving discontinuous metrics. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 833-842. doi: 10.3934/dcds.2006.15.833

[2]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

[3]

YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1

[4]

Rossella Bartolo. Periodic orbits on Riemannian manifolds with convex boundary. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 439-450. doi: 10.3934/dcds.1997.3.439

[5]

Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas. Stability of boundary distance representation and reconstruction of Riemannian manifolds. Inverse Problems & Imaging, 2007, 1 (1) : 135-157. doi: 10.3934/ipi.2007.1.135

[6]

David M. A. Stuart. Solitons on pseudo-Riemannian manifolds: stability and motion. Electronic Research Announcements, 2000, 6: 75-89.

[7]

Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097

[8]

Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173

[9]

Anthony M. Bloch, Rohit Gupta, Ilya V. Kolmanovsky. Neighboring extremal optimal control for mechanical systems on Riemannian manifolds. Journal of Geometric Mechanics, 2016, 8 (3) : 257-272. doi: 10.3934/jgm.2016007

[10]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[11]

Yuhua Sun. On the uniqueness of nonnegative solutions of differential inequalities with gradient terms on Riemannian manifolds. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1743-1757. doi: 10.3934/cpaa.2015.14.1743

[12]

Keith Burns, Eugene Gutkin. Growth of the number of geodesics between points and insecurity for Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 403-413. doi: 10.3934/dcds.2008.21.403

[13]

Bo Guan, Heming Jiao. The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 701-714. doi: 10.3934/dcds.2016.36.701

[14]

Mohammadreza Molaei. Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds. Electronic Research Announcements, 2018, 25: 8-15. doi: 10.3934/era.2018.25.002

[15]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[16]

Bernard Bonnard, Olivier Cots, Nataliya Shcherbakova. The Serret-Andoyer Riemannian metric and Euler-Poinsot rigid body motion. Mathematical Control & Related Fields, 2013, 3 (3) : 287-302. doi: 10.3934/mcrf.2013.3.287

[17]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[18]

Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

[19]

Andrei Agrachev, Ugo Boscain, Mario Sigalotti. A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 801-822. doi: 10.3934/dcds.2008.20.801

[20]

Marco Ghimenti, Anna Maria Micheletti, Angela Pistoia. The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2535-2560. doi: 10.3934/dcds.2014.34.2535

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (42)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]