March 2018, 38(3): 1315-1348. doi: 10.3934/dcds.2018054

Long-time behaviour of a radially symmetric fluid-shell interaction system

1. 

Kharkiv Karazin National University, 4 Svobody sq., 61077 Kharkiv, Ukraine

2. 

Kharkiv Automobile and Highway National University, 25 Yaroslava Mudrogo st., 61002 Kharkiv, Ukraine

* Corresponding author: Tamara Fastovska

Received  April 2017 Revised  September 2017 Published  December 2017

We study the long-time dynamics of a coupled system consisting of the 2D Navier-Stokes equations and full von Karman elasticity equations. We show that this problem generates an evolution semigroup $S_t$ possessing a compact finite-dimensional global attractor.

Citation: Tamara Fastovska. Long-time behaviour of a radially symmetric fluid-shell interaction system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1315-1348. doi: 10.3934/dcds.2018054
References:
[1] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
[2]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, Fluids and Waves, Contemp. Math., AMS, Providence, RI, 440 (2007), 55-82.

[3]

A. Boutet de Monvel and I. Chueshov, Uniqueness theorem for weak solutions of von Karman evolution equations, J. Math. Anal. Appl., 221 (1998), 419-429. doi: 10.1006/jmaa.1997.5681.

[4]

A. ChambolleB. DesjardinsM. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404. doi: 10.1007/s00021-004-0121-y.

[5] I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer-Verlag, Cham, 2015.
[6] I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999.
[7]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate, Math. Meth. Appl. Sci., 34 (2011), 1801-1812.

[8]

I. Chueshov and T. Fastovska, On interaction of circular cylindrical shells with a Poiseuille type flow, Evolution Equations and Control Theory, 5 (2016), 605-629. doi: 10.3934/eect.2016021.

[9]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), ⅷ+183 pp.

[10]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Comm. Pure Appl. Anal., 12 (2013), 1635-1656.

[11]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations, J. Diff. Eqs., 254 (2013), 1833-1862. doi: 10.1016/j.jde.2012.11.006.

[12]

I. Chueshov and I. Ryzhkova, On the interaction of an elastic wall with a Poiseuille-type flow, Ukrainian Mathematical Journal, 65 (2013), 158-177. doi: 10.1007/s11253-013-0771-0.

[13]

Q. DuM. D. GunzburgerL. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discrete Contin. Dyn. Syst., 9 (2003), 633-650. doi: 10.3934/dcds.2003.9.633.

[14] G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, 2 edition, Springer-Verlag, New York, 2011.
[15]

G. GaldiC. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q, q}$, Math. Annalen, 331 (2005), 41-74. doi: 10.1007/s00208-004-0573-7.

[16]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40 (2008), 716-737. doi: 10.1137/070699196.

[17]

M. GuidorziM. Padula and P. I. Plotnikov, Hopf solutions to a fluid-elastic interaction model, MMAS, 18 (2008), 215-269. doi: 10.1142/S0218202508002668.

[18]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems, Prog. Nonlinear Differ. Equ. Appl, 50 (2002), 197-216.

[19] O. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.
[20]

J. -L. Lions and E. Magenes, Problémes aux Limites non Homogénes et Applications, Vol. 1, Dunod, Paris, 1968.

[21]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.

[22] R. Temam, Infinite-Dimensional Dynamical Dystems in Mechanics and Physics, Springer-Verlag, New York, 1988.
[23]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001.

[24] H. Triebel, Interpolation Theory, Functional Spaces and Differential Operators, North Holland, Amsterdam, 1978.

show all references

References:
[1] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
[2]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, Fluids and Waves, Contemp. Math., AMS, Providence, RI, 440 (2007), 55-82.

[3]

A. Boutet de Monvel and I. Chueshov, Uniqueness theorem for weak solutions of von Karman evolution equations, J. Math. Anal. Appl., 221 (1998), 419-429. doi: 10.1006/jmaa.1997.5681.

[4]

A. ChambolleB. DesjardinsM. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404. doi: 10.1007/s00021-004-0121-y.

[5] I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer-Verlag, Cham, 2015.
[6] I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999.
[7]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate, Math. Meth. Appl. Sci., 34 (2011), 1801-1812.

[8]

I. Chueshov and T. Fastovska, On interaction of circular cylindrical shells with a Poiseuille type flow, Evolution Equations and Control Theory, 5 (2016), 605-629. doi: 10.3934/eect.2016021.

[9]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), ⅷ+183 pp.

[10]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Comm. Pure Appl. Anal., 12 (2013), 1635-1656.

[11]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations, J. Diff. Eqs., 254 (2013), 1833-1862. doi: 10.1016/j.jde.2012.11.006.

[12]

I. Chueshov and I. Ryzhkova, On the interaction of an elastic wall with a Poiseuille-type flow, Ukrainian Mathematical Journal, 65 (2013), 158-177. doi: 10.1007/s11253-013-0771-0.

[13]

Q. DuM. D. GunzburgerL. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discrete Contin. Dyn. Syst., 9 (2003), 633-650. doi: 10.3934/dcds.2003.9.633.

[14] G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, 2 edition, Springer-Verlag, New York, 2011.
[15]

G. GaldiC. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q, q}$, Math. Annalen, 331 (2005), 41-74. doi: 10.1007/s00208-004-0573-7.

[16]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40 (2008), 716-737. doi: 10.1137/070699196.

[17]

M. GuidorziM. Padula and P. I. Plotnikov, Hopf solutions to a fluid-elastic interaction model, MMAS, 18 (2008), 215-269. doi: 10.1142/S0218202508002668.

[18]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems, Prog. Nonlinear Differ. Equ. Appl, 50 (2002), 197-216.

[19] O. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.
[20]

J. -L. Lions and E. Magenes, Problémes aux Limites non Homogénes et Applications, Vol. 1, Dunod, Paris, 1968.

[21]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.

[22] R. Temam, Infinite-Dimensional Dynamical Dystems in Mechanics and Physics, Springer-Verlag, New York, 1988.
[23]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001.

[24] H. Triebel, Interpolation Theory, Functional Spaces and Differential Operators, North Holland, Amsterdam, 1978.
[1]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[2]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[3]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[4]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[5]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[6]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[7]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[8]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[9]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[10]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[11]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[12]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[13]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[14]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[15]

Milan Pokorný, Piotr B. Mucha. 3D steady compressible Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 151-163. doi: 10.3934/dcdss.2008.1.151

[16]

Andrei Fursikov. Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 269-289. doi: 10.3934/dcdss.2010.3.269

[17]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[18]

Kuanysh A. Bekmaganbetov, Gregory A. Chechkin, Vladimir V. Chepyzhov, Andrey Yu. Goritsky. Homogenization of trajectory attractors of 3D Navier-Stokes system with randomly oscillating force. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2375-2393. doi: 10.3934/dcds.2017103

[19]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[20]

Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (36)
  • HTML views (115)
  • Cited by (0)

Other articles
by authors

[Back to Top]